組み込み機器向けグラフィックスLSI

仕様書 AX51903/AX51903G

> AX51903_DS06P 2019年7月25日

はじめに

本仕様書は、当社製LSI AX51903/AX51903Gの仕様と機能を記載しています。

商標について

Arm、AMBA、Cortex、Thumb、Jazelle、TrustZoneは、Arm Limited (またはその子会社) の登録商標です。

CoreSight、NEONは、Arm Limited (またはその子会社) の商標です。

OpenVGはThe Khronos Group Inc.の商標です。

改訂履歴

改訂履歴 文書番号(版数)	年月日	ページ	改訂内容
AX51903_DS01P			初版
AX51903_DS02P	2017/08/14	F2-24 F2-26 全般 F4-19、21 F4-32	端子 106 HCLK端子の説明を追加 端子 114 CFC モジュール選択時は High 固定出力に修正 CF_nRESET の端子名称を「CF_RESET」に変更 図下に注記を追加 タイミングチャートを修正
AX51903_DS03P	2018/06/14	F1-4 F1-5 F2-4 F2-7 F2-18 ~ 26 F2-20 F2-27 F2-30 F2-35 F2-37 F2-38 F2-39 F4-24 F4-40	「座標空間」「描画プリミティブ」「色空間、フォーマット」「モーション画像 Codec」「レイヤ空間」「レイヤ数(ウィンドウ)」を訂正、「ローカル座標」「描画領域」「非可逆伸長: JPEG」を削除「ビデオ出力(表示)」「パレット」「CPU 周辺機能」「USB」を訂正、「デバッグ」を追加選択機能4の18ピンをDSP0、19ピンをDSP1に訂正選択機能4の106ピンに「Low出力」を追加UARTO_RTS ~ UART3_RTS(I)を(0)、UARTO_CTS ~ UART3_CTS(0)を(I)に訂正 nHWAIT端子のピン番号を訂正(132→107ピン) CFC、ATA モジュールから「パラレルバス(ホストモード)動作時に」を削除端子名訂正(CF_nIOCS16→CF_nIOIS16) CVINO ~ 3の説明を訂正ロジック端子の出力に関する真理値表を追加内部ポートの表に「I/O種別」を追加大見出し「2.5アナログ回路未使用時の端子処理」追加項目のWAIT立ち上がり時間の記述訂正レジスタ名を訂正
AX51903_DS04P	2018/09/13	F2-12ページ F4-17ページ	VCCIO1、VCCIO2の説明変更 データ確定遅延時間2のスペック変更(最大、最小)
AX51903_DS05P	2019/03/07	F1-5ページ F3-4ページ	内蔵 DRAM 容量の記載を変更 (AX51903G:1G ビットを追加) 見出しを追加 (「AG903G 捺印仕様」)
AX51903_DS06P	2019/07/25	F4-37ページ	SDコントローラのスペック訂正(SDホスト入力セットアップ 2→SDホスト入力ホールド2)

目次

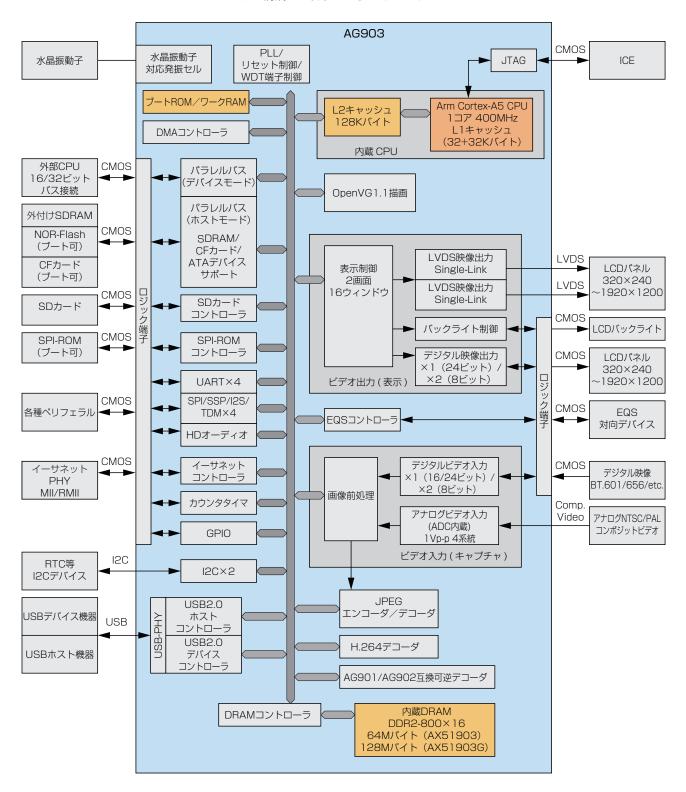
はじめに		2
	商標について	2
1章 概要		F1-1
1.1 概要	要と特長	F1-2
	AG903の概要	F1-2
	AG903のブロック構成	
1.2 概	路仕様	
	概略仕様	
	M-1 1 10	
2章 端子		F2-1
2.1 端	子配列	F2-2
2.2 端	子と選択機能	F2-3
2.3 端	子の機能	F2-12
	電源端子	F2-12
	テストモード / JTAG 端子	F2-13
	ブートモード設定端子	F2-13
	クロック端子	F2-14
	リセット端子	F2-14
	ロジック端子	F2-15
	内蔵 DRAM 用端子	
	LVDS トランスミッタ用端子	
	コンポジットビデオ入力用端子	
	USB用端子	
2.4 回路	各構成	F2-36
	ロジック端子の回路構成	
	I/O セルの構成	
2.5 ア	ナログ回路未使用時の端子処理	F2-39
3章 パッケージ		F3-1
3早ハッケーク		LO-1
3 1 시 1	ド 図	E3-2
	7仕様	
ひ.と 赤に		
	AX51903捺印仕様AX51903G捺印仕様	
	AX5 19036	F3-4
4章 電気的特性		F4-1
4.1 絶対	对最大定格	F4-2
	<u>ランス・ス・ス・ス・ス・ス・ス・ス・ス・ス・ス・ス・ス・ス・ス・ス・ス・ス・ス・</u>	
	大切 	
4.4 電》	原投入シーケンス	F4-0

I/O 電圧 3.3V 動作時のロジック端子 DC 特性	F4-6
I/O 電圧 1.8V 動作時のロジック端子 DC 特性	F4-6
入力リーク電流および入力セル容量	
4.6 AC特性	F4-7
クロック	F4-7
リセット	F4-8
表示 (CMOS)	F4-9
表示 (LVDS)	F4-11
キャプチャ	
パラレルバス (デバイスモード)	F4-15
パラレルバス (ホストモード)	F4-19
JTAG	F4-28
ペリフェラル	F4-29

1章 概要 AG903の概要や概略仕様について説明します。

1.1 概要と特長

AG903の概要と特長について説明します。


AG903の概要

AX51903/AX51903G (以下AG903と総称する場合があります。) は、組み込み用途に向けたグラフィックス LSIです。

- ・大容量 VRAM を内蔵し、安定した動作・供給性を実現。
- ・QFPパッケージを採用し、ボードの信頼性向上、コストダウンに寄与。
- ·OpenVG™1.1 に対応したベクタグラフィックス描画を採用し、高品位なフォント描画を実現。
- ・H.264 デコーダ (伸長)、JPEG コーデック (圧縮/伸長)を搭載。
- ・映像2系統出力に対応(最大解像度:1系統出力時WUXGA1920×1200)。
- ・ビデオキャプチャ機能を搭載、内蔵の機能と連携し、画像処理や圧縮などの付加機能も実現。
- ・コンポジットビデオ信号入力回路、ビデオ用ADCを4系統内蔵(同時使用可)。
- ・CPUとして Arm Cortex-A5 を内蔵し、コンパクトなシステムを実現。
- ・AG901/AG902と同様構成の外付けCPUによる運用もサポート。
- ・各種周辺ペリフェラルI/F (USB、CF、SD、イーサネット、UART、I2C、SPI、SSP) 内蔵。
- · USB/CF/SDインターフェース用電源ドライバの保護制御に対応。

AG903のブロック構成

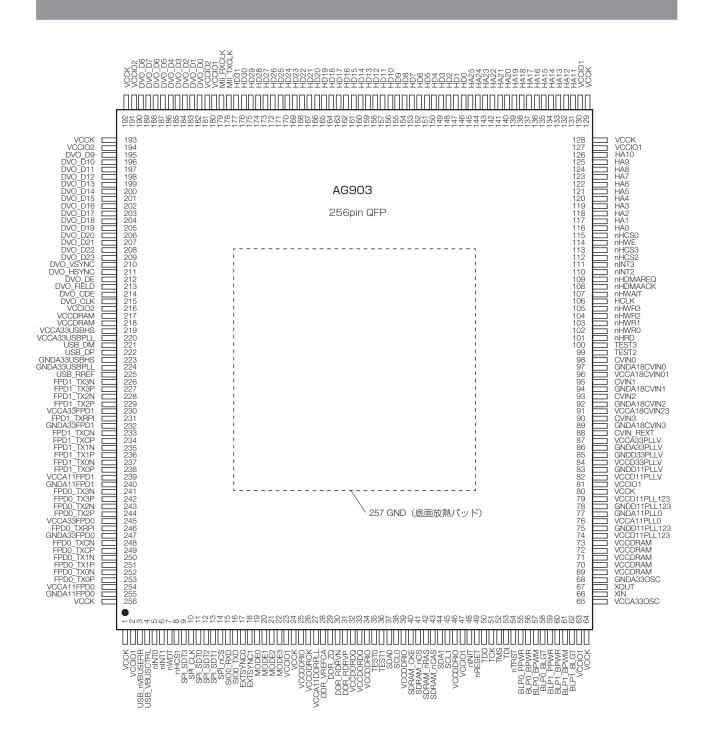
AG903のブロック構成は、以下のようになります。

1.2 概略仕様

AG903の概略仕様を以下に示します。

概略仕様

CPU I/F (デバイスモード時)	
 データバス幅	16/32ビット選択可能
アドレス空間	26ビット(64Mバイト)
バスクロック	最大 66MHz (同期/非同期)
割り込み	2端子
ウェイト	ハードウェアウェイト信号
データ転送	
転送元/転送先	外部-内部リソース間転送/内部-内部リソース間転送
転送モード	デバイスモード:デュアルアドレスモードのCPU内蔵DMACに対応
描画	
対応API	OpenVG1.1 準拠API および AG9描画API
ポリゴンピーク性能	最大2ドット/クロック
塗りつぶし	最大32ドット/クロック
矩形描画	最大2ドット/クロック
座標空間	8192×8192
描画制御	ディスプレイリスト方式
描画プリミティブ	パス (ライン、三角形、四角形など)、イメージ(矩形など)、他 OpenVG 1.1 準拠
描画エフェクト	テクスチャマッピング、αブレンド、輝度変調、フォグ、ポイントサンプリング、バイ
	リニアフィルタ、他 OpenVG 1.1 準拠
色空間、フォーマット	ARGB8888/XRGB8888/RGB565/YUV422/ARGB1555/ARGB4444/
+6.1.77744.5	L8/A8/A4/A1
静止画可逆伸長	VI = T(-1) (4.0001 (4.0000 T/2)
伸長	独自形式 (AG901/AG902 互換)
JPEG コーデック	
規格	JPEG (エンコード/デコード)
速度	最大200Mドット/秒(エンコード/デコード)
解像度	8×8画素~8192×8192画素(YUV420フォーマット時)
<u> </u>	JPEGの設定に依存
フォーマット	YUV422/YUV420
H.264 デコーダ	1,100,4 (4.1., 41), 1,22, 1,40, 1,70, 1,40, 1,70, 1,40, 1,70, 1,40, 1,70, 1,40, 1,70, 1,40,
規格	H.264 (Main/High プロファイルL4.2、デコードのみ)
速度 	最大200Mドット/秒(デコード)
解像度	48×32画素~2048×2048画素
上	H.264の設定に依存
フォーマット	YUV422/YUV420


 ビデオ出力(表示)	
最大画面解像度	・デジタル 1920×1200 (60Hz)
取八凹凹肝隊反	・LVDSシングル 1366×768 (60Hz)
	・LVDSデュアル 1920×1200 (60Hz)
 最小画面解像度	320 × 240/240 × 320
画面数	2 (バックライト制御有り)
ドットクロック	・デジタル 4~ 170MHz
	・LVDS シングル 20~ 85MHz
	・LVDSデュアル 20 ~ 170MHz相当
最大ウィンドウサイズ	2048 × 2048
最大ウィンドウ数 	16ウィンドウ(2画面合計)
フォーマット	ARGB8888/RGB888/RGB565/ARGB1555/ARGB4444/YCbCr422/
	L8/L4/L1
パレット	ウィンドウあたり 256色
発色数	最大24ビット
ビデオ入力(キャプチャ)	
 入力フォーマット	・デジタル:RGB888/RGB565/YCbCr422
	(ITU-R BT.601/656/709/1120)
	・アナログ:コンポジット(NTSC/PAL)
 入力数	デジタル2系統(8ビット時)またはデジタル1系統(16/24ビット時)
	アナログコンポジットビデオ4系統
 格納フォーマット	RGB888/RGB565/RGB555/YUV422
 水平解像度	2~4096 ドット(サイズ制限のない機能を使う場合)
 ドットクロック	最大 1 70MHz
フレーム	インタレース/プログレッシブ対応
 取り込み能力	720×480(60fps) 換算で4画面以上
	ヒストグラム生成、色変換、特性補正、拡大縮小、IP変換、JPEG圧縮等をフレーム
八万的起星	「バッファ取り込み前に処理可能
内蔵 DRAM	77277832313222 310
帯域	1.6Gバイト/秒
	AX51903:512Mビット(64Mバイト)
台里	AX51903: 312Mとすべ(04Mバイド) AX51903G: 1Gビット(128Mバイト)
 バスクロック	400MHz (800Mbps)
CL ## ODL	CL=5または6
内蔵CPU	
CPU コア/キャッシュ	Arm Cortex-A5 400MHz (VFP/NEON内蔵)
	L1キャッシュ:命令用32Kバイト + データ用32Kバイト
	L2キャッシュ: 128Kバイト
CPU周辺機能	UART (×4)、汎用シリアル (SSP/SPI/I2S/TDMから選択)×4、
	I2C (×2)、GPIO(128ビット)、タイマ (×8)、DMAC(8チャンネル)、WDT
デバッグ	JTAG 経由のICE 接続をサポート
各種I/F	
イーサネット 	10/100M、MII / RMII対応
メディア 	CFカード、SDカード (SDSC/SDHC/SDIO/MMC)
USB	USB2.0 (HS/FS/LS) × 1 (ホスト/デバイス切り替え)
音声入出力	·4系統(系統ごとに I2S/右詰め/左詰め/TDM(最大24bit)/SPDIFから選択可能) ·1系統(HD-Audio)
	SRAMインターフェース (16/32ビット)、外付け SDRAM 対応
	4ビットSPIマスタ (EQS)
	バス接続をサポート
クロック	·
<u>・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・</u>	水晶振動子対応発振セル (24/25/27/30/48/50MHz)、または外部クロック
PLL 動作周波数	最大 600MHz
	AAA COOMINIA

テクノロジー	
製造プロセス	90nm-CMOS
動作周波数	最大400MHz(内蔵CPU)、最大200MHz(ペリフェラル)
電源	
系統、および電圧	・コア: 1.15V ・I/O: 1.8V、または3.3V (選択可能) ・アナログ: 3.3V ・DRAM: 1.8V
パッケージ	
形状	LQFP (底面放熱パッド付き)
端子数	256ピン
サイズ	28 × 28mm
ピッチ	0.4mmピッチ

2章 端子 ここでは、AG903の端子配置と端子の機能について説明します。

2.1 端子配列

AG903の端子配列を以下に示します。

※該当がないものは空欄としています。

2.2 端子と選択機能

AG903では多くの機能を内蔵するため、端子に複数の機能を割り当てています。 QFPパッケージのピン番号と機能の対応を以下に示します。

■表の見方

- · IN: 入力

・L-PD4: Low 出力プルダウン付き (ブートモード4のとき)

・IN-PU:入力 プルアップ付き ・H:High 出力

・IN-PD:入力 プルダウン付き ・Z:High-Z

・Z-PU: High-Z プルアップ付き

· Z-PU3: High-Z プルアップ付き (ブートモード3のとき)

・Z-PU34: High-Z プルアップ付き (ブートモード3、または4のとき)

· Z-PD: High-Z プルダウン付き

· Z-PD3: High-Z プルダウン付き (ブートモード3のとき)

ピン	端子名	1/0	GPI)	P-No	Gr	選技	尺機能	初期	値	固定	 機能		選択機能	 能 1		選択機	 態能2		選択機	 幾能3		選択機	 能4	
番号		種別	No.	Rst			0	1	2 (3 4	機能	名称	Rst	機能	名前	Rst	機能	名称	Rst	機能	名称	Rst	機能	名称	Rst
1	VCCK								\top	Т									1						
2	VCCIO1								T	\top	1														
3	USB_nVBUSERR	D	112	IN-PU	112		G	G	G (i G	USB	USB_nVBUSERR/	IN											İ	
												USB_VBUSVALID													
4	USB_VBUSCTRL	D	113	IN-PD	113		G	G	G (i G	USB	USB_VBUSCTRL	L												
5	nINT0	D	94	IN-PU	94	12	1	G	G (3				PBD	nINT0	Z	BSC	nINT0	IN	BSC	CF_nPWRERR	IN-PU			
6	nINT1	D	95	IN-PD	95	12	1	G	G (3				PBD	nINT1	Z	BSC	nINT1	IN	BSC	CF_PWREN	L			
7	nWDT	D									SPC	nWDT	IN												
8	nHCS1	D	93	IN-PU	93	19	1	G	G (i G				PBD	nHCS1	IN	SMC	nHCS1	Н	EQS	EQS_nCS	Н	SSP0	SSP0_FS(1st)	Z
9	SPI_SDT3	D	59	IN-PU	59	1	G	G	G (i G				SPI	SPI_SDT3	Z				EQS	EQS_SDT3	Z	SSP3	SSP3_SPDIFOUT	L
10	SPI_CLK	D	60	IN-PD	60	0	G	1	G (i G				SPI	SPI_CLK	L				EQS	EQS_CLK	L	SSP0	SSP0_SCLK	Z
11	SPI_SDT0	D	61	IN-PU	61	0	G	1	G (i G				SPI	SPI_SDT0	Z-PU				EQS	EQS_SDT0	Z	SSP0	SSP0_TXD	Z
12	SPI_SDT2	D	58	IN-PU	58	1	G	G	G (i G				SPI	SPI_SDT2	Z				EQS	EQS_SDT2	Z	SSP2	SSP2_SPDIFOUT	L
13	SPI_SDT1	D	62	IN-PU	62	0	G	1	G (i G				SPI	SPI_SDT1	Z-PU				EQS	EQS_SDT1	Z	SSP0	SSP0_RXD	Z
14	SPI_nCS	D	63	IN-PU	63	0	G	1	G (i G				SPI	SPI_nCS	Н				EQS	High出力	Н	SSP0	SSP0_FS(2nd)	Z
15	SIOO_RXD	D	96	IN-PU	96	10	G	G	G (i G				UART0	UARTO_RXD	IN									
16	SIOO_TXD	D	97	IN-PU	97	10	G	G	G (i G				UART0	UARTO_TXD	L									
17	EXTSYNC0	D	98	IN-PU	98	11	G	G	G (i G				UART0	UARTO_RTS	L	BSC	BUSREQ	L				DSP0	DVO_EXTSYNC0	IN
18	EXTSYNC1	D	99	IN-PU	99	11	G	G	G (i G				UART0	UARTO_CTS	IN	BSC	BUSACK	IN				DSP1	DVO_EXTSYNC1	IN
19	MODE0	В									SSC	MODE0	IN												
20	MODE1	В									SSC	MODE1	IN												
21	MODE2	В									SSC	MODE2	IN												
22	MODE3	В									SSC	MODE3	IN												
23	VCCIO1																								
24	VCCK																								
25	VCCDDRIO																								
26	VCCDDRCK																								
27	VCCA11DDRPLL																								
28	DDR_VREFCA	AN									DDR	DDR_VREFCA													
29	DDR_ZQ	NC								\perp	DDR	DDR_ZQ													
30	DDR_RDRVN	AN									DDR	DDR_RDRVN													
31	DDR_RDRVP	AN									DDR	DDR_RDRVP													
32	VCCDDRDQ																								

ピン	端子名	1/0	GPI)	P-No	Gr	選	択機	能初]期値	1	固定相			選択機能			選択機能	能2		選択機	 能3		選択機	 能4	
番号		種別	No.	Rst			0	1	2	3	4	機能	名称	Rst	機能	名前	Rst	機能	名称	Rst	機能	名称	Rst	機能	名称	Rst
33	VCCDDRDQ																									
34	VCCDDRIO																									
35	TEST0	А										SSC	TEST0	IN-PD												
36	TEST1	А										SSC	TEST1	IN-PD												
37	SDA0	D			128							IIC0	SDA0	IN												
38	SCL0	D			129							IIC0	SCL0	IN												
39	VCCDDRIO																									
40	SDRAM_CKE	D	100	IN-PU	100	16	G	G	G	G	G				UART3	UART3_RXD	IN	SDMC	SDRAM_CKE	L				SSP3	SSP3_FS	Z
41	SDRAM_nCS	D	101	IN-PU	101	16	G	G	G	G	G				UART3	UART3_TXD	L	SDMC	SDRAM_nCS	Н				SSP3	SSP3_TXD	Z
42	SDRAM_nRAS	D	102	IN-PU	102	16	G	G	G	G	G				UART3	UART3_RTS	L	SDMC	SDRAM_nRAS	Н				SSP3	SSP3_SCLK	Z
43	SDRAM_nCAS	D	103	IN-PU	103	16	G	G	G	G	G				UART3	UART3_CTS	IN	SDMC	SDRAM_nCAS	Н				SSP3	SSP3_RXD	Z
44	SDA1	D			130							IIC1	SDA1	IN												
45	SCL1	D			131							IIC1	SCL1	IN												
46	VCCDDRIO																									
47	VCCIO1																									
48	nINIT	В										SPC	nINIT	IN												
49	nRESET	В										SPC	nRESET	IN												
50	TD0	С			132							JTAG	TDO	OUT												
51	TCK	D										JTAG	TCK	IN												
52	TMS	D										JTAG	TMS	IN												
53	TDI	D										JTAG	TDI	IN												
54	nTRST	D										JTAG	nTRST	IN												
55	BLP0_PPWR	D	104	IN-PD	104	6	G	G	G	G	G				TIM	TI00	Z	VOD	BLP0_PPWR	L	CFC	CF_BVD1	IN	ATA	ATA_nPDIAG	IN
56	BLP0_BPWR	D	105	IN-PD	105	6	G	G	G	G	G				TIM	TI01	Z	VOD	BLP0_BPWR	L	CFC	CF_BVD2	IN	ATA	ATA_nDASP	IN
57	BLP0_BPWM	D	106	IN-PD	106	7	G	G	G	G	G				TIM	TI02	Z	VOD	BLP0_BPWM	L	SMC	nHCS1	Н			
58	BLP0_BLGT	D	107	IN-PD	107	7	G	G	G	G	G				TIM	TI03	Z	VOD	BLP0_BLGT	L	SMC	nHWAIT	IN			
59	BLP1_PPWR	D	108	IN-PU	108	8	G	G	G	G	G				UART1	UART1_RXD	IN	VOD	BLP1_PPWR	L				SSP1	SSP1_FS	Z
60	BLP1_BPWR	D	109	IN-PU	109	8	G	G	G	G	G				UART1	UART1_TXD	L	VOD	BLP1_BPWR	L				SSP1	SSP1_TXD	Z
61	BLP1_BPWM	D	110	IN-PU	110	9	G	G	G	G	G				UART1	UART1_RTS	L	VOD	BLP1_BPWM	L	SMC	nHADSC	Н	SSP1	SSP1_SCLK	Z
62	BLP1_BLGT	D	111	IN-PU	111	9	G	G	G	G	G				UART1	UART1_CTS	IN	VOD	BLP1_BLGT	L	ETH	MII_PDN	L	SSP1	SSP1_RXD	Z
63	VCCIO1																									
64	VCCK																									
65	VCCA330SC																									

ピン	端子名	1/0	GPIC)	P-No	Gr	選担		 影	期値		固定植			選択機能	 崔 1		選択機能	£2		選択機	 能3		選択機		
番号		種別	No.	Rst			0	1	2	3	4	機能	名称	Rst	機能	名前	Rst	機能	名称	Rst		名称	Rst	機能	名称	Rst
66	XIN	AN						П		\Box		SPC	XIN													
67	XOUT	AN										SPC	XOUT													
68	GNDA330SC									T															ĺ	
69	VCCDRAM																									
70	VCCDRAM								Î																	
71	VCCDRAM									一	\neg															
72	VCCDRAM																									
73	VCCDRAM																									
74	VCCD11PLL123																									
75	GNDD11PLL123																									
76	VCCA11PLL0																									
77	GNDA11PLL0																									
78	GNDD11PLL123																									
79	VCCD11PLL123																									
80	VCCK																									
81	VCCIO1																									
82	VCCD11PLLV																									
83	GNDD11PLLV																									
84	VCCD33PLLV					Ш	<u> </u>																			
85	GNDD33PLLV										_															
86	GNDA33PLLV										_															
87	VCCA33PLLV						<u> </u>				_															
88	CVIN_REXT	AN									_	VIA	CVIN_REXT													
89	GNDA18CVIN3					Ш	<u> </u>			_	_															
90	CVIN3	AN					_		\Box	\dashv		VIA	CVIN3													
91	VCCA18CVIN23					Ш	<u> </u>			_	_							ļ								
92	GNDA18CVIN2					Ш	_		\Box	\dashv	_															
93	CVIN2	AN				Ш	<u> </u>				_	VIA	CVIN2					<u> </u>								igsqcup
94	GNDA18CVIN1					Ш	_																			igsquare
95	CVIN1	AN				Ш	<u> </u>				_	VIA	CVIN1					<u> </u>								
96	VCCA18CVIN01					Ш	<u> </u>				_															igsqcut
97	GNDA18CVIN0					Ш	<u> </u>				_						<u> </u>									igsquare
98	CVIN0	AN										VIA	CVIN0													

ピン	端子名	1/0	GPI		P-No	Gr	選択	機能	初期·	値	固定相			選択機能	 七 1		選択機能	 能2		選択機	 能3		選択機	 能 4	
番号		種別	No.	Rst			0 .	1 2	2 3	4	機能	名称	Rst	機能	名前	Rst	機能	名称	Rst	機能	名称	Rst	機能	名称	Rst
99	TEST2	А							Т	Т	SSC	TEST2	IN-PD												
100	TEST3	А									SSC	TEST3	IN-PD												\top
101	nHRD	D	114	IN-PD	114	17	1 0	i 2	2	3				PBD	nHRD	IN	EBI	nHRD	Н	CFC	CF_nOE	Н	ATA	ATA_nSEL	Н
102	nHWR0	D	115	IN-PD	115	17	1 0	i 2	2	G				PBD	nHWR0	IN	EBI	nHWR0	Н	CFC	High出力	Н	ATA	High出力	Н
103	nHWR1	D	116	IN-PD	116	17	1 6	i 2	2	G				PBD	nHWR1	IN	EBI	nHWR1	Н	CFC	CF_nWE	Н	ATA	High 出力	Н
104	nHWR2	D	117	IN-PD	117	17	1 0	i G	2	3				PBD	nHWR2	IN	EBI	nHWR2	Н	CFC	CF_nlORD	Н	ATA	ATA_nDIOR	Н
105	nHWR3	D	118	IN-PD	118	17	1 0	i G	2	3				PBD	nHWR3	IN	EBI	nHWR3	Н	CFC	CF_nlOWR	Н	ATA	ATA_nDIOW	Н
106	HCLK	D			133	21	1 4	2	2	2					Low出力	L	SMC	HCLK	L					Low出力	L
107	nHWAIT	D	119	IN-PD	119	18	1 0	a G	G	3				PBD	nHWAIT	Z	SMC	nHWAIT	IN	BSC	CF_nWAIT	IN	ATA	ATA_IORDY	IN
108	nHDMAACK	D	120	IN-PD	120	20	G G	a G	i G	3				PBD	nHDMAACK	IN	BSC	nHDMAACK	L	CFC	CF_nREG	Z	ATA	ATA_nDMACK	Н
109	nHDMAREQ	D	121	IN-PD	121	20	GG	a G	i G	G				PBD	nHDMAREQ	Н	BSC	nHDMAREQ	IN	CFC	(no function)	IN	ATA	ATA_DMARQ	IN
110	nINT2	D	122	IN-PU	122	14	G G	G G	i G	G				UART2	UART2_RXD	IN	BSC	nINT2	IN						
111	nINT3	D	123	IN-PU	123	14	G G	G G	i G	G				UART2	UART2_TXD	L	BSC	nINT3	IN						
112	nHCS2	D	124	IN-PD	124	15	GG	G G	i G	3				UART2	UART2_RTS	L	SMC	nHCS2	Н	BSC	CF_nCE1	Z	ATA	ATA_nCS0	Z
113	nHCS3	D	125	IN-PD	125	15	G G	a G	i G	3				UART2	UART2_CTS	IN	SMC	nHCS3	Н	BSC	CF_nCE2	Z	ATA	ATA_nCS1	Z
114	nHWE	D	126	IN-PD	126	18	1 0	à 2	2	3				SSC	INITDONE	L	EBI	nHWE	Н		High出力	Н			
115	nHCS0	D	127	IN-PU	127	13	1 0	i 2	2	2				PBD	nHCS0	IN	SMC	nHCS0	Н						
116	HA0	D	32	IN-PD	32	22	G G	i 2	2	2					(no function)	IN	EBI	HA0	L-PD4	CFC	CF_A0	L	ATA	ATA_A0	L
117	HA1	D	33	IN-PD	33	22	1 0	i 2	2	2				PBD	HA1	IN	EBI	HA1	L-PD4	CFC	CF_A1	L	ATA	ATA_A1	L
118	HA2	D	34	IN-PD	34	22	1 0	i 2	2	2				PBD	HA2	IN	EBI	HA2	L-PD4	CFC	CF_A2	L	ATA	ATA_A2	L
119	HA3	D	35	IN-PD	35	23	1 0	i 2	2	2				PBD	HA3	IN	EBI	HA3	L-PD4	CFC	CF_A3	L			
120	HA4	D	36	IN-PD	36	23	1 0	à 2	2	2				PBD	HA4	IN	EBI	HA4	L-PD4	CFC	CF_A4	L			
121	HA5	D	37	IN-PD	37	23	1 0	i 2	2	2				PBD	HA5	IN	EBI	HA5	L-PD4	CFC	CF_A5	L			
122	HA6	D	38	IN-PD	38	23	1 0	à 2	2	2				PBD	HA6	IN	EBI	HA6	L-PD4	CFC	CF_A6	L			
123	HA7	D	39	IN-PD	39	23	1 0	i 2	2	2				PBD	HA7	IN	EBI	HA7	L-PD4	CFC	CF_A7	L			
124	HA8	D	40	IN-PD	40	23	1 0	à 2	2	2				PBD	HA8	IN	EBI	HA8	L-PD4	CFC	CF_A8	L			
125	HA9	D	41	IN-PD	41	23	1 0	i 2	2	2				PBD	HA9	IN	EBI	HA9	L-PD4	CFC	CF_A9	L			
126	HA10	D	42	IN-PD	42	23	1 0	à 2	2	2				PBD	HA10	IN	EBI	HA10	L-PD4	CFC	CF_A10	L			
127	VCCIO1									\perp															
128	VCCK																								
129	VCCK																								
130	VCCIO1									\perp															
131	HA11	D	43	IN-PU	43	24	1 0	à 2	2	G				PBD	HA11	IN	EBI	HA11	L				UART3	UART3_RXD	IN

ピン	端子名	1/0	GPI	O C	P-No	Gr	選	 択機	能初	期値	<u> </u>	固定植			選択機能			選択機	 能2		選択機			選択機	 能 4	
番号		種別	No.	Rst	1		0	1	2	3	4	機能	名称	Rst	機能	名前	Rst	機能	名称	Rst	機能	名称	Rst	機能	名称	Rst
132	HA12	D	44	IN-PU	44	24	1	G	2	2	G				PBD	HA12	IN	EBI	HA12	L				UART3	UART3_TXD	L
133	HA13	D	45	IN-PU	45	24	1	G	2	2	G				PBD	HA13	IN	EBI	HA13	L				UART3	UART3_RTS	L
134	HA14	D	46	IN-PU	46	24	1	G	2	2	G				PBD	HA14	IN	EBI	HA14	L				UART3	UART3_CTS	IN
135	HA15	D	47	IN-PU	47	25	1	G	2	2	G				PBD	HA15	IN	EBI	HA15	L				SDC	SD_WP	IN-PU
136	HA16	D	48	IN-PU	48	25	1	G	2	2	G				PBD	HA16	IN	EBI	HA16	L				SDC	SD_nCD	IN-PU
137	HA17	D	49	IN-PD	49	26	1	G	2	2	G				PBD	HA17	IN	EBI	HA17	L				SDC	SD_DAT1	Z
138	HA18	D	50	IN-PD	50	26	1	G	2	2	G				PBD	HA18	IN	EBI	HA18	L				SDC	SD_DAT0	Z
139	HA19	D	51	IN-PD	51	27	1	G	2	2	G				PBD	HA19	IN	EBI	HA19	L	ETH	MII_TXD3	L	SDC	SD_CLK	L
140	HA20	D	52	IN-PU	52	27	1	G	2	2	G				PBD	HA20	IN	EBI	HA20	L	ETH	MII_TXD2	L	SDC	SD_nPWRERR	IN-PU
141	HA21	D	53	IN-PD	53	27	1	G	2	2	G				PBD	HA21	IN	EBI	HA21	L	ETH	MII_CRS	IN	SDC	SD_POWER	L
142	HA22	D	54	IN-PD	54	27	1	G	2	2	G				PBD	HA22	IN	EBI	HA22	L	ETH	MII_COL	IN	SDC	SD_CMD	Z
143	HA23	D	55	IN-PD	55	27	1	G	2	2	G				PBD	HA23	IN	EBI	HA23	L	ETH	MII_RXD2	IN	SDC	SD_DAT3	Z
144	HA24	D	56	IN-PD	56	27	1	G	2	2	G				PBD	HA24	IN	EBI	HA24	L	ETH	MII_RXD3	IN	SDC	SD_DAT2	Z
145	HA25	D	57	IN-PD	57	28	1	G	2	2	G				PBD	HA25	IN	EBI	HA25	L						
146	HD0	D	0	IN-PD	0	29	1	G	2	2	2				PBD	HD0	Z	EBI	HD0	Z-PD	CFC	CF_D0	Z	ATA	ATA_D0	Z
147	HD1	D	1	IN-PD	1	29	1	G	2	2	2				PBD	HD1	Z	EBI	HD1	Z-PD	CFC	CF_D1	Z	ATA	ATA_D1	Z
148	HD2	D	2	IN-PD	2	29	1	G	2	2	2				PBD	HD2	Z	EBI	HD2	Z-PD	CFC	CF_D2	Z	ATA	ATA_D2	Z
149	HD3	D	3	IN-PD	3	29	1	G	2	2	2				PBD	HD3	Z	EBI	HD3	Z-PD	CFC	CF_D3	Z	ATA	ATA_D3	Z
150	HD4	D	4	IN-PD	4	29	1	G	2	2	2				PBD	HD4	Z	EBI	HD4	Z-PD	CFC	CF_D4	Z	ATA	ATA_D4	Z
151	HD5	D	5	IN-PD	5	29	1	G	2	2	2				PBD	HD5	Z	EBI	HD5	Z-PD	CFC	CF_D5	Z	ATA	ATA_D5	Z
152	HD6	D	6	IN-PD	6	29	1	G	2	2	2				PBD	HD6	Z	EBI	HD6	Z-PD	CFC	CF_D6	Z	ATA	ATA_D6	Z
153	HD7	D	7	IN-PD	7	29	1	G	2	2	2				PBD	HD7	Z	EBI	HD7	Z-PD	CFC	CF_D7	Z	ATA	ATA_D7	Z
154	HD8	D	8	IN-PD	8	29	1	G	2	2	2				PBD	HD8	Z	EBI	HD8	Z-PD	CFC	CF_D8	Z	ATA	ATA_D8	Z
155	HD9	D	9	IN-PD	9	29	1	G	2	2	2				PBD	HD9	Z	EBI	HD9	Z-PD	CFC	CF_D9	Z	ATA	ATA_D9	Z
156	HD10	D	10	IN-PD	10	29	1	G	2	2	2				PBD	HD10	Z	EBI	HD10	Z-PD	CFC	CF_D10	Z	ATA	ATA_D10	Z
157	HD11	D	11	IN-PD	11	29	1	G	2	2	2				PBD	HD11	Z	EBI	HD11	Z-PD	CFC	CF_D11	Z	ATA	ATA_D11	Z
158	HD12	D	12	IN-PD	12	29	1	G	2	2	2				PBD	HD12	Z	EBI	HD12	Z-PD	CFC	CF_D12	Z	ATA	ATA_D12	Z
159	HD13	D	13	IN-PD	13	29	1	G	2	2	2				PBD	HD13	Z	EBI	HD13	Z-PD	CFC	CF_D13	Z	ATA	ATA_D13	Z
160	HD14	D	14	IN-PD	14	29	1	G	2	2	2				PBD	HD14	Z	EBI	HD14	Z-PD	CFC	CF_D14	Z	ATA	ATA_D14	Z
161	HD15	D	15	IN-PD	15	29	1	G	2	2	2				PBD	HD15	Z	EBI	HD15	Z-PD	CFC	CF_D15	Z	ATA	ATA_D15	Z
162	HD16	D	16	IN-PD	16	30	1	G	G	2	3				PBD	HD16	Z	EBI	HD16	Z-PD3	CFC	CF_nl0CS16	IN			
163	HD17	D	17	IN-PU	17	30	1	G	G	2	3				PBD	HD17	Z	EBI	HD17	Z-PU3	BSC	High出力	Н			Н
164	HD18	D	18	IN-PD	18	30	1	G	G	2	3				PBD	HD18	Z	EBI	HD18	Z-PD3	BSC	CF_RESET	Z	ATA	ATA_nRESET	Z

ピン	端子名	1/0	GPI)	P-No	Gr	選折	機能	初期	値	固定相			選択機能			選択機能	能2		選択機	·····································		選択機	 後能 4	
番号		種別	No.	Rst]		0	1	2 3	3 4	機能	名称	Rst	機能	名前	Rst	機能	名称	Rst	機能	名称	Rst	機能	名称	Rst
165	HD19	D	19	IN-PD	19	30	1	G	G 2	3				PBD	HD19	Z	EBI	HD19	Z-PD3	BSC	CF_READY	IN	ATA	ATA_INTRQ	IN
166	HD20	D	20	IN-PU	20	30	1	G (G 2	3				PBD	HD20	Z	EBI	HD20	Z-PU34	BSC	CF_nCD	IN	BSC	CF_nCD	IN
167	HD21	D	21	IN-PD	21	31	1	G	G 2	G				PBD	HD21	Z	EBI	HD21	Z-PU3	ETH	MII_TXD1	L	SSP2	SSP2_FS	Z
168	HD22	D	22	IN-PD	22	31	1	G	G 2	G				PBD	HD22	Z	EBI	HD22	Z-PU3	ETH	MII_TXD0	L	SSP2	SSP2_TXD	Z
169	HD23	D	23	IN-PD	23	31	1	G	G 2	G				PBD	HD23	Z	EBI	HD23	Z-PU3	ETH	MII_TXEN	L	SSP2	SSP2_SCLK	Z
170	HD24	D	24	IN-PD	24	31	1	G	G 2	G				PBD	HD24	Z	EBI	HD24	Z-PU3	ETH	MII_RXERR	IN	SSP2	SSP2_RXD	Z
171	HD25	D	25	IN-PD	25	31	1	G	G 2	G				PBD	HD25	Z	EBI	HD25	Z-PU3	ETH	MII_RXDV	IN	HDA	ARSTX	Н
172	HD26	D	26	IN-PD	26	31	1	G	G 2	G				PBD	HD26	Z	EBI	HD26	Z-PU3	ETH	MII_RXD0	IN	HDA	ASYNC	L
173	HD27	D	27	IN-PD	27	31	1	G	G 2	G				PBD	HD27	Z	EBI	HD27	Z-PU3	ETH	MII_RXD1	IN	HDA	ASDI	L
174	HD28	D	28	IN-PD	28	31	1	G	G 2	G				PBD	HD28	Z	EBI	HD28	Z-PU3	ETH	MII_LINKUP	IN	HDA	ABCLK	L
175	HD29	D	29	IN-PD	29	31	1	G	G 2	G				PBD	HD29	Z	EBI	HD29	Z-PU3	ETH	MII_WOL	L	HDA	ASD0	L
176	HD30	D	30	IN-PD	30	31	1	G	G 2	G				PBD	HD30	Z	EBI	HD30	Z-PU3	ETH	MII_MDC	Z	SSP0	SSP0_SPDIFOUT	L
177	HD31	D	31	IN-PD	31	31	1	G	G 2	G				PBD	HD31	Z	EBI	HD31	Z-PU3	ETH	MII_MDIO	Z	SSP1	SSP1_SPDIFOUT	L
178	MII_TXCLK	В			134	31					SPC	ALT_CLK1	IN							ETH	MII_TXCLK	IN			
179	MII_RXCLK	В			135	27					SPC	ALT_CLK0	IN							ETH	MII_RXCLK	IN			
180	VCCIO1																								
181	VCCI02																								
182	DVO_D0	Е	64	IN-PD	64	2	G	G	G G	G							VOD	DVO_D0	L	VID	VID_D0	IN			
183	DVO_D1	Е	65	IN-PD	65	2	G	G (G G	G							VOD	DVO_D1	L	VID	VID_D1	IN			
184	DVO_D2	Е	66	IN-PD	66	2	G	G (G G	G							VOD	DVO_D2	L	VID	VID_D2	IN			
185	DVO_D3	Е	67	IN-PD	67	2	G	G	G G	G							VOD	DVO_D3	L	VID	VID_D3	IN			
186	DVO_D4	Е	68	IN-PD	68	2	G	G	G G	G							VOD	DVO_D4	L	VID	VID_D4	IN			
187	DVO_D5	Е	69	IN-PD	69	2	G	G	G G	G							VOD	DVO_D5	L	VID	VID_D5	IN			
188	DVO_D6	Е	70	IN-PD	70	2	G	G	G G	G							VOD	DVO_D6	L	VID	VID_D6	IN			
189	DVO_D7	Е	71	IN-PD	71	2	G	G	G G	G							VOD	DVO_D7	L	VID	VID_D7	IN			
190	DVO_D8	Е	72	IN-PD	72	2	G	G	G G	G							VOD	DVO_D8	L	VID	VID_D8	Z			
191	VCCI02																								
192	VCCK																								
193	VCCK																								
194	VCCI02																								
195	DVO_D9	Е	73	IN-PD	73	2	G	G	G G	G							VOD	DVO_D9	L	VID	VID_D9	Z			
196	DV0_D10	E	74	IN-PD	74	2	G	G	G G	G							VOD	DV0_D10	L	VID	VID_D10	IN			
197	DVO_D11	Е	75	IN-PD	75	2	G	G	G G	G							VOD	DV0_D11	L	VID	VID_D11	IN			

ピン	端子名	1/0	GPI)	P-No	Gr	選捌	マ機能		期値	į (固定核			選択機能	 指 1		選択機	能2		選択機	 能3		選択機		
番号		種別	No.	Rst	1		0	1	2	3	4	機能	名称	Rst	機能	名前	Rst	機能	名称	Rst	機能	名称	Rst	機能	名称	Rst
198	DV0_D12	Е	76	IN-PD	76	2	G	G	G	G	G							VOD	DV0_D12	L	VID	VID_D12	IN			
199	DV0_D13	Е	77	IN-PD	77	3	G	G	G	G	G				SPC	DOT_CLK1	IN	VOD	DV0_D13	L	VID	VID_D13	IN			
200	DV0_D14	Е	78	IN-PD	78	4	G	G	G	G	G							VOD	DV0_D14	L	VID	VID_D14	IN			
201	DV0_D15	Е	79	IN-PD	79	4	G	G	G	G	G							VOD	DV0_D15	L	VID	VID_D15	IN			
202	DV0_D16	Е	80	IN-PD	80	4	G	G	G	G	G							VOD	DV0_D16	L	VID	VID_D16	IN			
203	DV0_D17	Е	81	IN-PD	81	4	G	G	G	G	G							VOD	DV0_D17	L	VID	VID_D17	IN			
204	DV0_D18	Е	82	IN-PD	82	4	G	G	G	G	G							VOD	DV0_D18	L	VID	VID_D18	IN			
205	DV0_D19	Е	83	IN-PD	83	4	G	G	G	G	G							VOD	DV0_D19	L	VID	VID_D19	IN			
206	DV0_D20	Е	84	IN-PD	84	4	لــــــاا	G	G	G	G							VOD	DV0_D20	L	VID	VID_D20	IN			
207	DV0_D21	Е	85	IN-PD	85	4	G	G	G	G	G							VOD	DV0_D21	L	VID	VID_D21	IN			
208	DV0_D22	Е	86	IN-PD	86	4	G	G	G	G	G							VOD	DV0_D22	L	VID	VID_D22	IN			
209	DV0_D23	Е	87	IN-PD	87	4	G	G	G	G	G							VOD	DV0_D23	L	VID	VID_D23	IN			
210	DVO_VSYNC	Е	88	IN-PD	88	5	G	G	G	G	G							VOD	DVO_VSYNC	L	VID	VID_VSYNC	Z			
211	DVO_HSYNC	Е	89	IN-PD	89	5	G	G	G	G	G							VOD	DVO_HSYNC	L	VID	VID_HSYNC	Z			
212	DVO_DE	Е	90	IN-PD	90	5	G	G	G	G	G							VOD	DVO_DE	L	VID	VID_DE	IN			
213	DVO_FIELD	Е	91	IN-PD	91	5	G	G	G	G	G							VOD	DVO_FIELD	IN	VID	VID_FIELD	IN			
214	DVO_CDE	Е	92	IN-PD	92	5	G	G	G	G	G							VOD	DVO_CDE	L						
215	DVO_CLK	Е			136							SPC	DOT_CLK0	IN-PD												
216	VCCI02																									
217	VCCDRAM																									
218	VCCDRAM																									
219	VCCA33USBHS						Ш																			
220	VCCA33USBPLL																									
221	USB_DM	USB										USB	USB_DM													
222	USB_DP	USB										USB	USB_DP													
223	GNDA33USBHS																									
224	GNDA33USBPLL																									
225	USB_RREF	AN										USB	USB_RREF													
226	FPD1_TX3N	LVDS										LVDS	FPD1_TX3N	Z												
227	FPD1_TX3P	LVDS											FPD1_TX3P	Z				<u> </u>								Ш
228	FPD1_TX2N	LVDS										LVDS	FPD1_TX2N	Z												
229	FPD1_TX2P	LVDS										LVDS	FPD1_TX2P	Z												igsquare
230	VCCA33FPD1																									

ピン	端子名	1/0	GPI		P-No	Gr	選	 択機	能初	期個	<u> </u>	固定核			選択機能	能1		選択機能	能2		選択機	総3		選択機	能4	
番号		種別	No.	Rst	1		0	1	2	3	4	機能	名称	Rst	機能	名前	Rst	機能	名称	Rst	機能	名称	Rst	機能	名称	Rst
231	FPD1_TXRPI	AN							Ì																	
232	GNDA33FPD1																			1						
233	FPD1_TXCN	LVDS						İ				LVDS	FPD1_TXCN	Z			1			1					İ	
234	FPD1_TXCP	LVDS										LVDS	FPD1_TXCP	Z						1						
235	FPD1_TX1N	LVDS										LVDS	FPD1_TX1N	Z												
236	FPD1_TX1P	LVDS										LVDS	FPD1_TX1P	Z												
237	FPD1_TX0N	LVDS										LVDS	FPD1_TX0N	Z						1						
238	FPD1_TX0P	LVDS										LVDS	FPD1_TX0P	Z												
239	VCCA11FPD1																			1						
240	GNDA11FPD1																									
241	FPD0_TX3N	LVDS										LVDS	FPD0_TX3N	Z												
242	FPD0_TX3P	LVDS										LVDS	FPD0_TX3P	Z												
243	FPD0_TX2N	LVDS										LVDS	FPD0_TX2N	Z												
244	FPD0_TX2P	LVDS						İ				LVDS	FPD0_TX2P	Z												
245	VCCA33FPD0																									
246	FPD0_TXRPI	AN																								
247	GNDA33FPD0																									
248	FPD0_TXCN	LVDS										LVDS	FPD0_TXCN	Z												
249	FPD0_TXCP	LVDS										LVDS	FPD0_TXCP	Z												
250	FPD0_TX1N	LVDS										LVDS	FPD0_TX1N	Z												
251	FPD0_TX1P	LVDS										LVDS	FPD0_TX1P	Z												
252	FPD0_TX0N	LVDS										LVDS	FPD0_TX0N	Z												
253	FPD0_TX0P	LVDS										LVDS	FPD0_TX0P	Z												
254	VCCA11FPD0																									
255	GNDA11FPD0																									
256	VCCK																									
257	GND																									

2.3 端子の機能

各端子の機能について説明します。

電源端子

ピン番号	端子名	電圧	説明
1,24,64,80,128,129,192,193,256	VCCK	1.15V	ロジックコア用電源
2,23,47,63,81,127,130,180	VCCIO1	1.8/3.3V	ロジック端子(I/O種別A~D、ピン番号3~
			179)用I/O電源
181,191,194,216	VCCIO2	1.8/3.3V	ロジック端子(I/O種別E、ピン番号182~
			215)用I/O電源
25,34,39,46	VCCDDRIO	1.8V	DDRコントローラ用電源
26	VCCDDRCK	1.8V	DDRコントローラ用電源
32,33	VCCDDRDQ	1.8V	DDRコントローラ用電源
27	VCCA11DDRPLL	1.15V	DDRコントローラPLL用電源
69,70,71,72,73,217,218	VCCDRAM	1.8V	内蔵DRAM用電源
65	VCCA330SC	3.3V	発振セル用電源
68	GNDA330SC	_	発振セル用グラウンド
74,79	VCCD11PLL123	1.15V	内蔵PLL1、2、3用電源
75,78	GNDD11PLL123	_	内蔵 PLL 1、2、3 用グラウンド
76	VCCA11PLLO	1.15V	内蔵PLLO用電源
77	GNDA11PLLO	_	内蔵PLLO用グラウンド
82	VCCD11PLLV	1.15V	アナログビデオ入力用PLL電源
83	GNDD11PLLV	_	アナログビデオ入力用 PLL グラウンド
84	VCCD33PLLV	3.3V	アナログビデオ入力用PLL電源
85	GNDD33PLLV	_	アナログビデオ入力用 PLL グラウンド
86	GNDA33PLLV	_	アナログビデオ入力用 PLL グラウンド
87	VCCA33PLLV	3.3V	アナログビデオ入力用PLL電源
96	VCCA18CVIN01	1.8V	アナログビデオ入力用電源
91	VCCA18CVIN23	1	
97	GNDA18CVINO	_	アナログビデオ入力用グラウンド
94	GNDA18CVIN1		
92	GNDA18CVIN2		
89	GNDA18CVIN3		
219	VCCA33USBHS	3.3V	USB2.0 用電源
223	GNDA33USBHS	_	USB2.0 用グラウンド
220	VCCA33USBPLL	3.3V	USB2.0用PLL電源
224	GNDA33USBPLL	_	USB2.0用PLLグラウンド
230	VCCA33FPD1	3.3V	LVDS トランスミッタ用電源
245	VCCA33FPD0	1	
232	GNDA33FPD1	_	LVDS トランスミッタ用グラウンド
247	GNDA33FPD0	1	
239	VCCA11FPD1	1.15V	LVDS トランスミッタ用電源
254	VCCA11FPD0	1	
240	GNDA11FPD1	_	LVDS トランスミッタ用グラウンド
255	GNDA11FPD0	1	
257 (底面 PAD)	GND	_	パッケージ底面放熱パッド (ePAD)、デジタル グラウンド兼放熱端子。 グラウンドに接続してください。

テストモード/ JTAG端子

ピン番号	端子名	1/0	説明
36	TEST1	I	グラウンドに接続、またはプルダウンしてください。
99	TEST2	1	グラウンドに接続、またはプルダウンしてください。
100	TEST3	1	JTAG端子の動作を設定します。
			・Low:内蔵 CPU の JTAG チェーンに接続
			・High:バウンダリスキャン動作
50	TDO	0	JTAGのデイジーチェーン出力
51	TCK	1	JTAGのクロック入力
52	TMS	1	JTAGのテストモード入力
53	TDI	1	JTAGのデイジーチェーン入力
54	nTRST	1	JTAGのリセット入力 (負論理)

ブートモード設定端子

ピン番号	端子名	1/0	説明								
19	MODEO	1	ブートモードを設定します。								
20	MODE1	1	ブート名称		MODE2	MODE1	MODEO				
21	MODE2	1		1—771							
			ブートモード0	ブートなし	Low	Low	Low				
			ブートモード 1	SPI-ROM	Low	Low	High				
			ブートモード2	NOR-Flash (16ビット幅)	Low	High	Low				
			ブートモード3	NOR-Flash (32ビット幅)	Low	High	High				
			ブートモード4	CFカード	High	Low	Low				
			ブートモード5	reserved	High	Low	High				
			ブートモード6	reserved	High	High	Low				
			ブートモード7	reserved	High	High	High				
			ブート=	モードの動作は、「ブートモード	`](F4-16^	ページ) を参	照。				

クロック端子

ピン番号	端子名	1/0	説明
22	MODE3	T	オシレータの周波数レンジを設定します。
			· Low: 24 ~ 42MHz
			· High : 42 ~ 66MHz
35	TESTO	1	クロック生成の方法を選択する。
			・「L」レベル:水晶振動子を使用する
			· 「H」 レベル:外部クロック入力を使用する
			本端子はプルダウン処理を行っています。そのため、外部クロック入力を使用する際はプルアップ抵抗を使用せず、「H」レベルを印加してください。
66	XIN	_	・水晶発振子を使用する場合:水晶発振子を接続します。
			・水晶発振子を使用しない場合:オープン
67	XOUT	_	・水晶発振子を使用する場合:水晶発振子を接続します。
			・水晶発振子を使用しない場合:クロック入力端子として使用します。
			クロック入力端子として使用する場合は、「メインクロック」(「メインクロック」(「メインクロック」(F4-6 ページ)) 参照。

リセット端子

ピン番号	端子名	1/0	説明
7	nWDT	1/0	汎用ウォッチドッグタイマ入出力です。(負論理) ・nWDTを入力に設定している場合 High レベルから Low レベルに変化させると、AG903 は nWDT による初期化動作 (デジタル回路、PLL 等クロック回路)をします。このとき端子設定は保持されます。 初期化動作の対象については、「4.1 リセット」(F4-2ページ)参照。
			・nWDTを出力に設定している場合 汎用ウォッチドッグタイマモジュールのタイムアウト出力として機能します。 ウォッチドッグタイマの動作については。「13.4 ウォッチドッグタイマ」(F13-54ページ) 参照。
48	nINIT	I	ロジック回路のみを対象としたリセットです。(負論理) nINITをHighからLowに変化させると、AG903はnINITによるデジタル回路の初期化動作をします。 このときPLL等クロック回路、アナログ回路、端子設定には影響を与えません。 初期化動作の対象については、「4.1 リセット」(F4-2ページ)参照。
49	nRESET	I	システムリセットです。(負論理) nRESETをLowにすると、AG903はリセット状態となります。 nRESETをHighにすることで、リセット状態は解除されます。 リセット状態のとき、PLL等アナログ回路は停止状態となります。

ロジック端子

端子機能は、各グループの SSCPIN_FUNCO/1 レジスタで選択します。 SSCPIN_FUNCO/1 レジスタで選択される機能を「選択機能」、レジスタの設定にかかわらず使用できる機能は「固定機能」になります。

ピン番号	端子名	1/0	説明
3	USB_nVBUSERR · USB_nVBUSERR · USB_VBUSVALID · GPIO112	1/0	 ・USBホスト動作時 USB_nVBUSERR VBUS電源異常検出入力として使用します。 電源異常時に Low を入力してください。 ・USBデバイス動作時 USB_VBUSVALID VBUS電源検出入力として使用します。 VBUS 検出時に High を入力してください。 機能選択 説明 GPIO GPIO3モジュール (ビット 16) GPIO112 (I/O)
4	USB_VBUSCTRL · USB_VBUSCTRL · GPI0113	1/0	USBホスト動作時 USB_VBUSCTRL USB用の VBUS電源制御出力として使用します。(正論理) 機能選択 説明 GPIO GPIO3モジュール(ビット 17) GPIO 1 1 3 (I/O)
5	nINTO · nINTO · nINTO · CF_nPWRERR · GPI094	1/0	グループ12の設定により、端子機能を選択します。 機能選択 説明 機能 1 PBD モジュール nINTO (O) パラレルバス (デバイスモード) 動作時に割り込み出力信号として使用します。(負論理) 機能 2 BSC モジュール nINTO (I) パラレルバス (ホストモード) 動作時に割り込み入力として使用します。(負論理) 機能 3 BSC モジュール CF_nPWRERR (I) CFカード電源異常検出端子です。 CFカード用電源異常時にLowを入力してください。(負論理) GPIO GPIO2モジュール (ビット 30) GPIO94 (I/O)
6	nINT1 · nINT1 · nINT1 · CF_PWREN · GPI095	1/0	グループ12の設定により、端子機能を選択します。 機能選択 説明 機能 1 PBD モジュール nINT1 (O) パラレルバス (デバイスモード) 動作時に割り込み出力信号として使用します。(負論理) 機能 2 BSC モジュール nINT1 (I) パラレルバス (ホストモード) 動作時に割り込み入力として使用します。(負論理) 機能 3 BSC モジュール CF_PWREN (O) CFカード電源制御信号出力端子 CFカード電源制御信号として使用します。(正論理) GPIO GPIO2 モジュール (ビット31) GPIO95 (I/O)

ピン番号	端子名	1/0	説明	
8	nHCS1	1/0	******	9の設定により、端子機能を選択します。
		0		
	· nHCS1		機能選択	説明
	· nHCS1		機能1	PBDモジュール nHCS1 (I)
	· EQS_nCS			パラレルバス (デバイスモード) 動作時に nHCS 1 チップセレクト入 力信号として使用します。(負論理)
	· SSP0_FS(1st) · GPI093		 機能2	SMCモジュール nHCS1 (0)
	. 951093		1100,115 (パラレルバス (ホストモード) 動作時に nHCS 1 チップセレクト出力
				信号として使用します。(負論理)
			機能3	EQSモジュール EQS_nCS (0)
				EQS動作時にチップセレクト出力信号として使用します。(負論理)
			機能4	SSPOモジュール SSPO_FS (I/O)
				SSPO モジュールのフレーム信号として使用します。
				この端子において、SSPO_FSが選択されていないときは、SPI_
			GPIO	nCS端子にこの機能を割り当てることができます。 GPIO2モジュール (ビット29) GPIO93 (I/O)
			- GP10	GPI02 E21-W (E3 29) GPI093 (NO)
9	SPI_SDT3	1/0	グループ 1 (の設定により、端子機能を選択します。
		"		
	· SPI_SDT3		機能選択	説明
	· EQS_SDT3		機能 1	SPIモジュール SPI_SDT3 (I/O) SPIモジュールの SPI_SDT3 データ入出力として使用します。
	· SSP3_SPDIFOUT			SPIモジュールのSPI_SDT3 データ人品/Jとして使用します。 EQS モジュール EQS_SDT3 (I/O)
	· GPI059		機能3	EQS モジュールのEQS_SDT3 (ハロ) EQS モジュールのEQS_SDT3 データ入出力として使用します。
			 機能4	SSP3モジュール SSP3_SPDIFOUT (0)
			1,201,00	SSP3モジュールのSPDIF出力として使用します。
			GPIO	GPI02モジュール (ビット27) GPI059 (I/0)
10		1/0	<i>#</i> `''	7-1-1-1- LO 447-18401 ++
10	SPI_CLK	1/0		の設定により、端子機能を選択します。
	· SPI_CLK		機能選択	説明
	· EQS_CLK		機能1	SPIモジュール SPI_CLK (0)
	· SSPO_SCLK			SPIモジュールの SPI_CLK 出力として使用します。
	· GPI060		機能3	EQSモジュール EQS_CLK (0)
				EQS モジュールのEQS_CLK 出力として使用します。
			機能4	SSP0 モジュール SSP0_SCLK (I/O) SSP0 モジュールの SSP0_SCLK 入出力として使用します。
			GPIO	GPI02モジュール (ビット28) GPI060 (I/0)
				01 102 E2
11	SPI_SDT0	1/0	グループログ	か設定により、端子機能を選択します。
	· SPI_SDTO		機能選択	説明
	· EQS_SDTO		機能1	SPIモジュール SPI_SDTO (I/O)
	· SSPO_TXD			SPIモジュールの SPI_SDTO データ入出力として使用します。
	· GPI061		機能3	EQSモジュール EQS_SDTO (I/O)
			 機能4	EQS モジュールの EQS_SDTO データ入出力として使用します。 SSPO モジュール SSPO_TXD (I/O)
			1成月七 午	SSP0 モジュール SSP0_TXD (パロ) SSP0 モジュールの SSP0_TXD 出力として使用します。
				システムセカンダリ <i>SSCSSP_SETUP</i> レジスタの設定により、
				SSPO_RXD入力としても使用できます。
			GPIO	GPI02モジュール (ビット29) GPI061 (I/0)

12、44口	- ニフカ	1/0	=200	
ピン番号	端子名	1/0	説明	
12	SPI_SDT2	1/0	クルーフ (の設定により、端子機能を選択します。
	· SPI_SDT2		機能選択	説明
	· EQS_SDT2		機能 1	SPIモジュール SPLSDT2 (I/O)
	· SSP2_SPDIFOUT			SPIモジュールのSPI_SDT2データ入出力として使用します。
	· GPI058		機能3	EQSモジュール EQS_SDT2 (I/O)
				EQS モジュールの EQS_SDT2 データ入出力として使用します。
			機能4	SSP2モジュール SSP2_SPDIFOUT (0)
				SSP2モジュールのSPDIF出力として使用します。
			GPIO	GPI02モジュール (ビット26) GPI058 (I/0)
1.0	ODL ODT1	1/0	#II = 0	Φ=0.ch
13	SPI_SDT1	1/0	クルーノU(の設定により、端子機能を選択します。
	· SPI_SDT1		機能選択	説明
	· EQS_SDT1		機能 1	SPIモジュール SPLSDT1 (I/O)
	· SSPO_RXD			SPIモジュールの SPI_SDT 1 データ入出力として使用します。
	· GPI062		機能3	EQSモジュール EQS_SDT1 (I/O)
				EQSモジュールのEQS_SDT1データ入出力として使用します。
			機能4	SSPOモジュール SSPO_RXD (I/O)
				SSP0 モジュールの SSP0_RXD 入力として使用します。
				システムセカンダリ <i>SSCSSP_SETUP</i> レジスタの設定により、
				SSPO_SSPMCLK入力または出力としても使用できます。
			<u>GPIO</u>	GPI02モジュール (ビット30) GPI062 (I/0)
14	SPI_nCS	1/0	ガループログ	の設定により、端子機能を選択します。
14		1/0		の政定により、畑 」1成形で、歴外しより。
	· SPI_nCS		機能選択	説明
	· SSPO_FS(2nd)		機能1	SPIモジュール SPI_nCS (0)
	· GPI063			SPIモジュールの SPI_nCS 出力として使用します。
			機能3	EQS モジュール [High] 固定出力 (O)
				「機能3」を選択した場合は、Highを出力します。
				ブート時にSPIモジュールを使用し、ブート完了後EQSモジュールを使用する場合を想定しています。
				を使用する場合を想定しています。
			機能4	SSPOモジュール SSPO_FS (I/O)
				SSPOモジュールのSSPO_FS入出力信号として使用します。 nHCS1端子がSSPO_FSとして使用されていない場合に選択でき
				ます。
			GPIO	GPI02モジュール (ビット31) GPI063 (I/O)
15	SIOO_RXD	1/0	グループ 10	つの設定により、端子機能を選択します。
			機能選択	説明
	· UARTO_RXD		機能]	UARTOモジュール UARTO RXD (I)
	· GPI096		1成月七	UARTOモジュール UARTO_RXD (I) UARTOモジュールのUARTO_RXD データ入力として使用します。
			GPI0	GPIO3モジュール (ビット0) GPIO96 (I/0)
				ST 100 E2 1 77 (E2 10) OF 1000 (1/0)
16	SIOO_TXD	1/0	グループ 10	つの設定により、端子機能を選択します。
			松林 台口 255+口	≣Ynn
	· UARTO_TXD		機能選択	説明
	· GPI097		機能1	UARTO モジュール UARTO_TXD (0) UARTO モジュールの UARTO_TXD データ出力として使用します。
			GPIO	GPIO3モジュール(ビット1) GPIO97 (I/O)
			<u> </u>	GFIU3 Lタエール(Eット1) GFIU3/ (I/U)

ピン番号	端子名	1/0	説明	
17	EXTSYNCO	1/0	2000	の設定により、端子機能を選択します。
			機能選択	説明
	· UARTO_RTS		機能引	MARTOモジュール UARTO_RTS (0)
	BUSREQ DVO_EXTSYNCO		17 次月已 I	UARTOモジュールのUARTO_RTS出力として使用します。
	· GPI098		 機能2	BSCモジュール BUSREQ (0)
				パラレルバス(ホストモード)動作時に、BSCモジュールの
				BUSREQ出力として使用します。
			機能4	DSPOモジュール DVO_EXTSYNCO (I)
				DSPOモジュールの外部同期入力信号 DVO_EXTSYNCO として使
				用します。
			GPI0	GPI03モジュール (ビット2) GPI098 (I/0)
18	EXTSYNC1	1/0	グループ 1 1	の設定により、端子機能を選択します。
	· UARTO_CTS		機能選択	説明
	· BUSACK		機能1	UARTOモジュール UARTO_CTS (I)
	· DVO_EXTSYNC1			UARTOモジュールのUARTO_CTS入力として使用します。
	· GPI099		機能2	BSCモジュール BUSACK (I)
				パラレルバス(ホストモード)動作時に、BSCモジュールの BUSACK入力として使用します。
			 機能4	DSP1モジュール DVO_EXTSYNC1 (I)
			1)X/HC —	DSP1モジュールの外部同期入力信号 DVO_EXTSYNC1 として使
				用します。
			GPI0	GPI03モジュール (ビット3) GPI099 (I/0)
37	SDAO	1/0	IICOモジュ-	ールのI2Cデータ入出力
38	SCLO	1/0	IICOモジュ-	ールのI2Cクロック入出力
40	SDRAM_CKE	1/0	グループ 16	の設定により、端子機能を選択します。
	· UART3_RXD		機能選択	説明
	· SDRAM_CKE		機能 1	UART3モジュール UART3_RXD (I)
	· SSP3_FS			UART3モジュールのUART3_RXDデータ入力として使用します。
	· GPI0100		機能2	SDMCモジュール SDRAM_CKE (0)
				パラレルバス (ホストモード) 動作時にSDMCモジュールの
				SDRAM_CKE出力として使用します。
			機能4	SSP3 モジュール SSP3_FS (I/O) SSP3 モジュールのフレーム信号として使用します。
			GPI0	GPIO3モジュール (ビット4) GPIO100 (I/0)
41	SDRAM_nCS	1/0	グループ 16 	の設定により、端子機能を選択します。
	· UART3_TXD		機能選択	説明
	· SDRAM_nCS		機能 1	UART3モジュール UART3_TXD (0)
	· SSP3_TXD			UART3 モジュールの UART3_TXD データ出力として使用します。
	· GPI0101		機能2	SDMCモジュール SDRAM_nCS (0)
				パラレルバス (ホストモード) 動作時に SDMC モジュールの SDRAM_nCS 出力として使用します。(負論理)
			 機能4	SSP3モジュール SSP3_TXD (I/O)
				SSP3モジュールのSSP3_TXD出力として使用します。
				システムセカンダリ <i>SSCSSP_SETUP</i> レジスタの設定により、
				SSP3_RXD 入力としても使用できます。
			<u>GPIO</u>	GPI03モジュール (ビット5) GPI0101 (I/0)

ピン番号	端子名	1/0	説明	
42	SDRAM_nRAS	1/0	グループ 16	6の設定により、端子機能を選択します。
			機能選択	
	· UART3_RTS		機能1	UART3モジュール UART3_RTS (0)
	· SDRAM_nRAS		放托	UART3モジュール UART3_RTS 出力として使用します。
	· SSP3_SCLK · GPI0102		機能2	SDMCモジュール SDRAM_nRAS (0)
	. GPIU 102		1/X/FIC C	パラレルバス(ホストモード)動作時にSDMCモジュールの
				SDRAM_nRAS出力として使用します。(負論理)
			機能4	SSP3モジュール SSP3_SCLK (I/O)
				SSP3 モジュールの SSP3_SCLK 入出力として使用します。
			GPIO	GPI03モジュール (ビット6) GPI0102 (I/0)
43		1/0	<i>H</i>	るの設定により、端子機能を選択します。
43	SDRAM_nCAS	1/0		OV設定により、蛹丁械形で選択します。
	· UART3 CTS		機能選択	説明
	· SDRAM_nCAS		機能1	UART3モジュール UART3_CTS (I)
	· SSP3_RXD			UART3モジュールのUART3_CTS入力として使用します。
	· GPI0103		機能2	SDMCモジュール SDRAM_nCAS (0)
				パラレルバス(ホストモード)動作時にSDMCモジュールの
				SDRAM_nCAS 出力として使用します。(負論理)
			機能4	SSP3モジュール SSP3_RXD (I/O)
				SSP3モジュールのSSP3_RXD入力として使用します。
				システムセカンダリ <i>SSCSSP_SETUP</i> レジスタの設定により、 SSP3_SSPMCLK入力または出力としても使用できます。
			GPIO	GPIO3モジュール (ビット7) GPIO103 (I/0)
				01100 27 17 (27 17 0110 100 (110)
44	SDA1	1/0	IIC1モジュ	ールのI2Cデータ入出力
45	SCL1	1/0	IIC1モジュ	ールのI2Cクロック入出力
55	BLPO_PPWR		グループ60	か設定により、端子機能を選択します。
	· TIOO		機能選択	説明
	· BLPO_PPWR		機能 1	TIMモジュール TIOO (I/O)
	· CF BVD1			TIM モジュールのタイマ入出力 TIOO として使用します。
	· ATA_nPDIAG			入出力の切り替えは、システムセカンダリ SSCTIM_SETUP レジス
	· GPI0104			夕で設定します。
			機能2	VODモジュール BLPO_PPWR (0)
				バックライト制御用のパネル電源制御信号出力として使用します。
			機能3	CFC モジュール CF_BVD1 (I)
				CFコントローラの CF_BVD1 入力として使用します。
			機能4	ATAモジュール ATA_nPDIAG (I)
				ATAコントローラのATA_nPDIAG入力として使用します。(負論
				理)
			GPIO	GPI03モジュール (ビット8) GPI0104 (I/0)

ピン番号	端子名	1/0	説明	
56	BLPO_BPWR	1/0	グループ6の設定により、端子機能を選択します。	
			機能選択	
	· TIO 1		機能1	TIMモジュール TIO1 (I/O)
	BLPO_BPWR CF_BVD2		ואאור ו	TIMモジュールのタイマ入出力TIO1として使用します。
	· ATA_nDASP			入出力の切り替えは、システムセカンダリ SSCTIM_SETUP レジス
	· GPI0105			夕で設定します。
			機能2	VODモジュール BLPO_BPWR (0)
				バックライト制御用のバックライト電源制御信号出力として使用し
			1616 414 00	ます。
			機能3	CFC モジュール CF_BVD2 (I) CFコントローラの CF_BVD2 入力として使用します。
			 機能4	ATAモジュール ATA_nDASP (I)
			18以月ピ 午	ATA コントローラのATA_nDASP入力として使用します。(負論理)
			GPI0	GPIO3モジュール (ビット9) GPIO105 (I/O)
57	BLPO_BPWM	1/0	グループフ	か設定により、端子機能を選択します。
	 - TI02		機能選択	説明
	· BLPO_BPWM		機能1	TIMモジュール TIO2 (I/O)
	· nHCS1			TIM モジュールのタイマ入出力TIO2 として使用します。
	· GPI0106			入出力の切り替えは、システムセカンダリ SSCTIM_SETUP レジス
				タで設定します。
			機能2	VODモジュール BLPO_BPWM (O) バックライト制御用の輝度調整用 PWM 信号出力として使用します。
			 機能3	SMCモジュール nHCS1(0)
			INXHE O	パラレルバス (ホストモード) 動作時に、SMC モジュールのチップセ
				レクト出力nHCS1 信号として使用します。(負論理)
			GPI0	GPI03モジュール (ビット10) GPI0106 (I/0)
58	BLPO_BLGT	1/0	ガル	の設定により、端子機能を選択します。
	DEFO_DEOT	1/0		の文化により、細一版形で送外しより。
	· TIO3		機能選択	説明
	· BLPO_BLGT		機能1	TIMモジュール TIO3 (I/O)
	· nHWAIT			TIMモジュールのタイマ入出力TIO3として使用します。
	· GPI0107			入出力の切り替えは、システムセカンダリ <i>SSCTIM_SETUP</i> レジスタで設定します。
			 機能2	VODモジュール BLPO_BLGT (0)
			1/2/100	バックライト制御用のバックライトON/OFF信号出力として使用し
				ます。
			機能3	SMCモジュール nHWAIT (I)
				パラレルバス (ホストモード) 動作時、nHWAIT端子 (107ピン) が
				「機能2」を選択していない場合に、SMCモジュールのウェイト入力
				として使用します。 SRAMコントローラと CF コントローラの両方でウェイト信号を使
				用する場合に利用します。(負論理)
			GPIO	GPIO3モジュール (ビット11) GPIO107 (I/O)

ピン番号	端子名	1/0	説明		
59	BLP1_PPWR	1/0	グループ8の設定により、端子機能を選択します。		
	· UART1_RXD		機能選択	説明	
	· BLP1_PPWR · SSP1_FS		機能 1	UART1 モジュール UART1_RXD (I) UART1 モジュールのUART1_RXD データ入力として使用します。	
	· GPI0108		機能2	VODモジュール BLP1_PPWR (0) バックライト制御用のパネル電源制御信号出力として使用します。	
			機能4	SSP1 モジュール SSP1_FS (I/O) SSP1 モジュールのフレーム信号として使用します。	
			GPI0	GPI03モジュール (ビット12) GPI0108 (I/0)	
60	BLP1_BPWR	1/0	グループ80	の設定により、端子機能を選択します。	
	· UART1_TXD		機能選択	説明	
	· BLP1_BPWR · SSP1_TXD		機能 	UART1 モジュール UART1_TXD (O) UART1 モジュールのUART1_TXDデータ出力として使用します。	
	· GPI0109		機能2	VODモジュール BLP1_BPWR (O) バックライト制御用のバックライト電源制御信号出力として使用します。	
		機能4	SSP1 モジュール SSP1_TXD (I/O) SSP1 モジュールのSSP1_TXD出力として使用します。 システムセカンダリ SSCSSP_SETUP レジスタの設定により、 SSP1_RXD入力としても使用できます。		
			GPI0	GPI03モジュール (ビット13) GPI0109 (I/0)	
61	BLP1_BPWM	1/0	グループ9の設定により、端子機能を選択します。		
			機能選択		
	· UART1_RTS · BLP1_BPWM		機能1	UART1モジュール UART1_RTS (0)	
	· nHADSC			UART1 モジュールのUART1_RTS出力として使用します。	
	· SSP1_SCLK · GPI0110		機能2	VODモジュール BLP1_BPWM (O) バックライト制御用の輝度調整用PWM信号出力として使用します。	
			機能3	SMC モジュール nHADSC (0) パラレルバス (ホストモード) 動作時に、SMC モジュールの同期メモ リ用制御信号 nHADSC 信号として使用します。(負論理)	
			機能4	SSP1 モジュール SSP1_SCLK (I/O)	
			GPIO	SSP1 モジュールの SSP1_SCLK 入出力として使用します。 GPIO3 モジュール (ビット 14) GPIO1 10 (I/O)	
62	BLP1_BLGT	1/0		の設定により、端子機能を選択します。	
	LIADTI OTO		機能選択		
	· UART1_CTS · BLP1_BLGT · MII_PDN		機能 1	UART1 モジュール UART1_CTS (I) UART1 モジュールのUART1_CTS入力として使用します。	
	· SSP1_RXD · GPI0111		機能2	VODモジュール BLP1_BLGT (O) バックライト制御用のバックライト ON/OFF 信号出力として使用します。	
			機能3	ETHモジュール MII_PDN (O) イーサネットコントローラの PHY パワーダウン信号出力として使用 します。	
			機能4	SSP1 モジュール SSP1_RXD (I/O) SSP1 モジュールのSSP1_RXD 入力として使用します。	
				システムセカンダリ <i>SSCSSP_SETUP</i> レジスタの設定により、 SSP1_SSPMCLK入力または出力としても使用できます。	
			GPI0	GPIO3モジュール (ビット 15) GPIO111 (I/O)	

端子名	1/0	説明	
nHRD	1/0	グループ 17の設定により、端子機能を選択します。	
		機能選択	説明
			PBDモジュール nHRD (I)
		18%月七 1	パラレルバス (デバイスモード) 動作時にリードストローブ入力信号
_			として使用します。(負論理)
_		機能2	EBIモジュール nHRD (0)
			パラレルバス (ホストモード) 動作時にリードストローブ出力信号と
			して使用します。(負論理)
			EBIモジュールにより、以下のモジュールの信号を調停して出力しま
			す。 · SDMC モジュール選択時:High 固定出力
			・SDMCモジュール選択時:nJRD出力
			· CFC モジュール選択時:nOE 出力 (負論理)
		機能3	CFCモジュール CF nOE (0)
		ם בנוגגוו	CFC モジュールの CF_nOE 出力として使用します。(負論理)
		機能4	ATAモジュール ATA_nSEL (0)
			ATAモジュールのATA_nSEL出力として使用します。(負論理)
		GPI0	GPIO3モジュール (ビット18) GPIO114 (I/O)
nHWD0	1/0	<i>H</i> ill. → 1 =	7の設定により、端子機能を選択します。
IIHWNU	1/0		の設定により、蛹丁核形を選択しより。
· nHWRO		機能選択	説明
· nHWRO		機能1	PBDモジュール nHWRO (I)
· GPI0115			パラレルバス (デバイスモード) 動作時にバイト 0 のライトストロー
			ブ入力信号として使用します。(負論理)
		機能2	EBIモジュール nHWRO (O)
			パラレルバス (ホストモード)動作時にバイト 0 のライトストローブ 出力信号として使用します。(負論理)
			EBIモジュールにより、以下のモジュールの信号を調停して出力しま
			す。
			・SDMCモジュール選択時:バイトストローブ DQMO 出力
			・SMCモジュール選択時:バイトストローブ SMC_nHBEO 出力
			· CFC モジュール選択時:High 固定出力
		機能3	CFC モジュール High 固定出力 (O)
			High 固定出力として使用します。
		機能4	ATA モジュール High 固定出力 (O)
			High 固定出力として使用します。
		<u> </u>	GPIO3モジュール (ビット 19) GPIO 1 15 (I/O)
	nHRD · nHRD · nHRD · CF_nOE · ATA_nSEL · GPIO114 nHWRO · nHWRO · nHWRO	nHRD I/O · nHRD · nHRD · cF_nOE · ATA_nSEL · GPIO114 nHWRO · nHWRO · nHWRO · nHWRO	nHRD ・nHRD ・nHRD ・nHRD ・nHRD ・nHRD ・CF_nOE ・ATA_nSEL ・GPI0114 機能選択 機能1 機能3 機能4 GPI0 nHWR0 ・nHWR0 ・nHWR0 ・GPI0115 機能3 機能3 機能3 機能3 機能4 GPI0 がループ17 機能選択 機能1

ピン番号	端子名	1/0	説明	
103	nHWR1	1/0	グループ 17の設定により、端子機能を選択します。	
	· nHWR1		機能選択	説明
	· nHWR1		 機能 1	PBDモジュール nHWR1 (I)
	· CF_nWE			パラレルバス (デバイスモード) 動作時にバイト 1 のライトストロー
	· GPI0116			ブ入力信号として使用します。(負論理)
			機能2	EBIモジュール nHWR1 (0)
				パラレルバス (ホストモード) 動作時にバイト 1 のライトストローブ 出力信号として使用します。(負論理)
				EBIモジュールにより、以下のモジュールの信号を調停して出力します。
				・SDMCモジュール選択時:バイトストローブDQM1出力
				・SMCモジュール選択時:バイトストローブSMC nHBE1出力
				・CFC モジュール選択時:CF_nWE出力
			機能3	CFC モジュール CF_nWE (0)
				CFC モジュールの CF_nWE 出力として使用します。(負論理)
			機能4	ATA モジュール High 固定出力 (O)
				High 固定出力として使用します。
			_GPIO	GPI03モジュール (ビット20) GPI0116 (I/0)
104	nHWR2	1/0	グループ 17	7の設定により、端子機能を選択します。
	· nHWR2		機能選択	説明
	· nHWR2		機能 1	PBDモジュール nHWR2 (I)
	· CF_nIORD			パラレルバス (デバイスモード) 動作時にバイト2のライトストロー
	· ATA_nDIOR			ブ入力信号として使用します。(負論理)
	· GPI0117		機能2	EBIモジュール nHWR2 (0)
				パラレルバス (ホストモード)動作時にバイト2のライトストローブ
				出力信号として使用します。(負論理)
				EBIモジュールにより、以下のモジュールの信号を調停して出力します。
				・SDMCモジュール選択時:バイトストローブDQM2出力
				・SMCモジュール選択時:バイトストローブSMC_nHBE2出力
				· CFC モジュール選択時:CF_nIORD 出力
			機能3	CFCモジュール CF_nIORD (0)
				CFC モジュールの CF_nIORD 出力として使用します。(負論理)
			機能4	ATAモジュール ATA_nDIOR (0)
				ATA モジュールの ATA_nDIOR 出力として使用します。(負論理)
			GPI0	GPI03モジュール (ビット21) GPI0117 (I/0)
	1	1	Ì	

ピン番号	端子名	1/0	説明		
105	nHWR3	1/0	グループ 17の設定により、端子機能を選択します。		
			16K AK 753.10	=200	
	· nHWR3		機能選択	説明 EDD Tail white (A)	
	· nHWR3		機能1	PBDモジュール nHWR3 (I)	
	· CF_nIOWR			パラレルバス (デバイスモード) 動作時にバイト3のライトストロー	
	· ATA_nDIOW			ブ入力信号として使用します。(負論理)	
	· GPI0118		機能2	EBIモジュール nHWR3 (O)	
				パラレルバス(ホストモード)動作時にバイト3のライトストローブ	
				出力信号として使用します。(負論理) EBIモジュールにより、以下のモジュールの信号を調停して出力しま	
				EDI モンユールにより、以下のモンユールの信号を調停して出力します。	
				・SDMCモジュール選択時:バイトストローブ DQM3 出力	
				・SMC モジュール選択時:バイトストローブ SMC_nHBE3 出力	
				・CFC モジュール選択時: CF_nIOWR 出力(負論理)	
			 機能3	CFCモジュール CF_nIOWR (0)	
			11X715 O	CFC モジュールの CF_nIOWR 出力として使用します。(負論理)	
			 機能4	ATAモジュール ATA_nDIOW (O)	
			1双形 4	ATA モジュールのATA_nDIOW 出力として使用します。(負論理)	
			GPIO	GPIO3モジュール (ビット22) GPIO118 (I/O)	
			- GPIU 	GPI03 E91-17 (E9122) GPI0118 (I/O)	
106	HCLK	1/0	グループ21	の設定により、端子機能を選択します。	
	110114		機能選択		
	· HCLK		<u> 機能</u>	Low 固定出力	
			 機能2	SMCモジュール HCLK (0)	
			ואאום ב	パラレルバス(ホストモード)動作時にクロックを出力します。	
				SDRAMコントローラ使用時は、SDRAMで使用するクロックを出	
				力します。	
107	nHWAIT	1/0	グループ 18 	3の設定により、端子機能を選択します。	
	· nHWAIT		機能選択	説明	
	· nHWAIT		機能1	PBDモジュール nHWAIT (0)	
	· CF_nWAIT			パラレルバス (デバイスモード) 動作時にウェイト信号出力として使	
	· ATA_IORDY			用します。(負論理)	
	· GPI0119		機能2	PBHモジュール nHWAIT (I)	
				パラレルバス (ホストモード) 動作時にウェイト信号入力として使用	
				します。(負論理)	
			機能3	BSCモジュール CF_nWAIT (I)	
				BSCモジュールの CF_nWAIT 入力として使用します。(負論理)	
			機能4	ATAモジュール ATA_IORDY (I)	
				ATA モジュールの ATA_IORDY 入力として使用します。	
			GPIO	GPIO3モジュール (ビット23) GPIO119 (I/O)	
1					

ピン番号	端子名	1/0	説明		
108	nHDMAACK	1/0	グループ20の設定により、端子機能を選択します。		
			機能選択	説明	
	· nHDMAACK		機能 1	PBDモジュールnHDMAACK (I)	
	· nHDMAACK · CF_nREG		י טמאלוי	パラレルバス (デバイスモード) 動作時に DMA アクノリッジ入力と	
	· ATA_nDMACK			して使用します。(負論理)	
	· GPI0120		機能2	BSCモジュール nHDMAACK (0)	
				パラレルバス (ホストモード) 動作時に DMA アクノリッジ出力とし	
				て使用します。(負論理)	
			機能3	CFCモジュール CF_nREG (I)	
				CFC モジュールの CF_nREG 入力として使用します。(負論理)	
			機能4	ATA モジュール ATA_nDMACK (I) ATA モジュールの ATA_nDMACK 入力として使用します。(負論理)	
			GPIO	GPIO3モジュール (ビット24) GPIO120 (I/O)	
				01 100 E2 1 70 (E2) 1 E4) 01 10 1E0 (1/0)	
109	nHDMAREQ	1/0	グループ20	の設定により、端子機能を選択します。	
	· nHDMAREQ		機能選択	説明	
	· nHDMAREQ		機能 1	PBDモジュール nHDMAREQ (0)	
	· ATA_DMARQ			パラレルバス (デバイスモード) 動作時に DMA リクエスト出力とし	
	· GPI0121			て使用します。(負論理)	
			機能2	BSCモジュール nHDMAREQ (I)	
				パラレルバス (ホストモード) 動作時に DMA リクエスト入力として 使用します。(負論理)	
			 機能4	ATAモジュール ATA_DMARQ (I)	
			1)及日6 千	ATA モジュールの ATA_DIMARQ 入力として使用します。(負論理)	
			GPI0	GPIO3モジュール (ビット25) GPIO121 (I/O)	
110	INITO	1.00			
110	nINT2	1/0	クループ 14 	の設定により、端子機能を選択します。	
	· UART2_RXD		機能選択	説明	
	· nINT2		機能 1	UART2モジュール UART2_RXD (I)	
	· GPI0122			UART2モジュールのUART2_RXDデータ入力として使用します。	
			機能2	BSCモジュール nINT2 (I)	
				BSCモジュールの割り込み入力として使用します。(負論理)	
			GPIO	GPI03モジュール (ビット26) GPI0122 (I/0)	
111	nINT3	1/0	グループ 14	の設定により、端子機能を選択します。	
	LIADTO TVD		機能選択		
	· UART2_TXD · nINT3		機能 1	UART2モジュール UART2_TXD (0)	
	· GPI0123			UART2モジュールのUART2_TXDデータ出力として使用します。	
			機能2	BSCモジュール nINT3 (I)	
				BSCモジュールの割り込み入力として使用します。(負論理)	
			GPI0	GPI03モジュール (ビット27) GPI0123 (I/0)	

ピン番号	端子名	1/0	説明
112	nHCS2	1/0	グループ 15 の設定により、端子機能を選択します。
			機能選択 説明
	· UART2_RTS · nHCS2		機能 1 UART2モジュール UART2_RTS (0)
	· CF_nCE1		UART2モジュールのUART2_RTS出力として使用します。
	· ATA_nCSO		機能2 SMCモジュール nHCS2 (0)
	· GPI0124		パラレルバス (ホストモード) 動作時に SMC モジュールのチップセ
			レクト出力nHCS2信号として使用します。(負論理) 機能3 BSCモジュール CF_nCE1 (0)
			BSCモジュールのCF_nCE1出力として使用します。(負論理)
			機能4 ATAモジュール ATA_nCSO(0)
			ATA モジュールの ATA_nCSO 出力として使用します。(負論理)
			GPIO GPIO3モジュール(ビット28) GPIO124(I/O)
113	nHCS3	1/0	グループ 15 の設定により、端子機能を選択します。
			機能選択 説明
	· UART2_CTS · nHCS3		機能 1 UART2 モジュール UART2 CTS (I)
	· CF_nCE2		UART2モジュールのUART2_CTS入力として使用します。
	· ATA_nCS1		機能2 SMCモジュール nHCS3 (0)
	· GPI0125		パラレルバス (ホストモード) 動作時に SMC モジュールのチップセ
			レクト出力nHCS3信号として使用します。(負論理) 機能3 BSCモジュール CF_nCE2 (0)
			BSCモジュールのCF_nCE2出力として使用します。(負論理)
			機能4 ATAモジュール ATA_nCS1(0)
			ATAモジュールの ATA_nCS1 出力として使用します。(負論理)
			GPIO GPIO3モジュール (ビット29) GPIO125 (I/O)
114	nHWE	1/0	グループ 18の設定により、端子機能を選択します。
	·INITDONE		機能選択 説明
	· nHWE		機能 1 SSCモジュール INITDONE (O)
	· GPI0126		初期設定が完了し、パラレルバス (デバイスモード) のアクセスが可能になったことを示します。(正論理)
			機能2 EBIモジュール nHWE (O)
			パラレルバス (ホストモード) 動作時に EBI モジュールの WEB 信号と
			して使用します。EBIモジュールで調停する信号は以下のようになり
			ます。 ・SDMCモジュール選択時:ライトストローブ SDRAM_nWE 出力
			(負論理)
			・SMC モジュール選択時:ライトストローブ WEB 出力 (負論理)
			· CFC モジュール選択時:High 固定出力
			機能3 High固定出力 GPIO GPIO3モジュール(ビット30) GPIO126 (I/O)
			GPIO GPI03モジュール (ビット30) GPI0126 (I/0)
115	nHCS0	1/0	グループ 13の設定により、端子機能を選択します。
	· nHCSO		機能選択 説明
	· nHCSO		機能 1 PBDモジュール nHCSO (I)
	· GPI0127		パラレルバス (デバイスモード) のチップセレクト入力信号として使 用します。(負論理)
			機能2 SMCモジュール nHCSO (0)
			パラレルバス (ホストモード) 動作時に SMC モジュールのチップも
			レクト出力として使用します。(負論理)
			GPIO GPIO3モジュール (ビット31) GPIO127 (I/O)

ピン番号	端子名	1/0	説明	
116,117,	HAO~HA2	1/0	グループ22	2の設定により、端子機能を選択します。
118			機能選択	説明
	· HA1 ~ HA2		機能1	PBDモジュール HA1 ~ HA2 (I)
	· HAO ~ HA2		1/以月匕 1	パラレルバス (デバイスモード) のアドレス HA1 ~ HA2 として使用
	· CF_AO ~ CF_A2 · ATA_AO ~ ATA_A2			します。
	· GPI032 ~ 34			注意 HAO端子は使用しません。
				TAU ^M Tは使用しよせん。
			機能2	EBIモジュール HAO ~ HA2 (0)
				パラレルバス (ホストモード) 動作時に EBI モジュールのアドレス出
				力HAO~HA2として使用します。
				EBIモジュールで調停する信号は以下のようになります。
				· SDMCモジュール選択時:ADDRO ~ ADDRO
				・SMC モジュール選択時:ADDRO ~ ADDR2 ・CFC モジュール選択時:CF AO ~ CF A2
				アドレスの接続は各モジュールの説明に従って接続してください。
			 機能3	CFCモジュール CF AO ~ CF A2 (0)
			1成月ピ 〇	CFCモジュールのアドレス出力CF_AO~CF_A2として使用します。
			機能4	ATAモジュール ATA AO~ATA A2 (0)
			1,2013	ATAモジュールのアドレス出力ATA_AO~ATA_A2として使用し
				ます。
			GPIO	GPI01モジュール (ビット0~2) GPI032~GPI034 (I/0)
119,120,	 HA3∼HA10	1/0	ガル	3の設定により、端子機能を選択します。
121,122,	TIASTATO	1/0		のの政権により、州 」 版形を選択しより。
123,124,	· HA3 ~ HA10		機能選択	説明
125,126	· HA3 ~ HA10		機能1	PBDモジュール HA3~HA10 (I)
	· CF_A3 ~ CF_A10			パラレルバス (デバイスモード) のアドレス HA3 ~ HA10 として使
	· GPI035 ~ GPI042			用します。
			機能2	EBIモジュール HA3~HA10 (0)
				パラレルバス (ホストモード) 動作時にEBI モジュールのアドレス出
				カHA3~ HA10として使用します。 EBIモジュールで調停する信号は以下のようになります。
				· SDMCモジュール選択時:ADDR3~ADDR10
				・SMCモジュール選択時:ADDR3~ADDR10
				· CFC モジュール選択時:CF_A3 ~ CF_A10
				アドレスの接続は各モジュールの説明に従って接続してください。
			機能3	CFC モジュール CF_A3 ~ CF_A10 (0)
				CFCモジュールのアドレス出力CF_A3~CF_A10として使用します。
			GPI0	GPI01モジュール (ビット3~10) GPI035~GPI042 (I/0)

ピン番号	端子名	1/0	説明	
131,132,	HA11~HA14		グループ24	4の設定により、端子機能を選択します。
133,134			 機能選択	説明
	· HA11 ~ HA14			PBDモジュール HA11~HA14 (I)
	· HA11 ~ HA14		機能 1	パラレルバス (デバイスモード) のアドレス HA 1 1 ~ HA 1 4 として
	· UART3_RXD,			使用します。
	UART3_TXD, UART3_RTS,		 機能2	EBIモジュール HA11~HA14 (0)
	UART3_CTS		1100,115 (パラレルバス (ホストモード) 動作時にEBIモジュールのアドレス出
	· GPI043 ~ GPI046			カHA11~HA14として使用します。
				EBIモジュールで調停する信号は以下のようになります。
				・SDMCモジュール選択時:ADDR11~ADDR12、BA0~BA1
				・SMCモジュール選択時:ADDR11~ADDR14
				· CFC モジュール選択時:Low 固定出力
				アドレスの接続は各モジュールの説明に従って接続してください。
				注意 外付けSDRAMのバンクアドレス端子の接続に注意して
				ください。
			機能4	UART3モジュール UART3_RXD,TXD,RTS,CTS (I/O)
				グループ 16 (ピン番号 40 ~ 43) の機能をUART3 に選択していな
				いとき、これらの端子をUART3の端子として選択できます。
				以下の対応となります。
				· HA11 – UART3_RXD · HA12 – UART3_TXD
				· HA13 – UART3 RTS
				· HA14 - UART3 CTS
			GPIO	GPI01モジュール (ビット11~14) GPI043~GPI046 (I/0)
135,136	HA15~HA16	1/0	グループ25	5の設定により、端子機能を選択します。
	 ·HA15∼HA16		機能選択	説明
	· HA15~ HA16		機能 1	PBDモジュール HA15 ~ HA16 (I)
	· SD_WP, SD_nCD			パラレルバス (デバイスモード) のアドレスHA15~HA16として
	· GPI047 ~ GPI048			使用します。
			機能2	EBIモジュール HA15~HA16 (0)
				パラレルバス (ホストモード) 動作時に EBI モジュールのアドレス出
				カHA15~HA16として使用します。
				SMCモジュール選択時はADDR15~ADDR16を出力し、それ以
				外の期間はLow固定出力となります。
			機能4	SDCモジュール SD_WP, SD_nCD (I)
				各端子SDCモジュールの以下の信号として使用します。
				・HA15: ライトプロテクト信号SD_WP入力として使用します。・HA16:カード検出信号SD_nCD入力として使用します。(負論理)
			GPIO	- FATO: カート検山信号 3D_110D 大力として使用しより。(真調達) GPI01 モジュール (ビット 15 ~ 16) GPI047 ~ GPI048 (I/O)
			- GPIU	GFIOT ピクエール (ピッド 10~ 10) GFIO47 ~ GFIO48 (I/U)

ピン番号	端子名	1/0	
137,138	HA17~HA18	1/0	グループ26の設定により、端子機能を選択します。
107,100	ITIAT7 TIATO	"	
	· HA17~ HA18		機能選択 説明
	· HA17~ HA18		機能 1 PBDモジュール HA17~ HA18 (I) パラレルバス (デバイスモード) のアドレス HA17~ HA18 として
	SD_DAT1, SD_DAT0		使用します。
	· GPI049 ~ GPI050		機能2 EBIモジュール HA17~HA18 (0)
			パラレルバス (ホストモード) 動作時に EBI モジュールのアドレスと
			カHA17~HA18として使用します。
			SMCモジュール選択時は ADDR17 ~ ADDR18 を出力し、それり 外の期間は Low 固定出力となります。
			各端子SDCモジュールの以下の信号として使用します。
			・HA17:データバス信号SD_DAT1として使用します。
			・HA18:カード検出信号SD_DATOとして使用します。
			GPIO GPIO1モジュール (ビット17~18) GPIO49~GPIO50 (I/O)
139,140,	HA19~HA24	1/0	 グループ27の設定により、端子機能を選択します。
141,142,	117(10 117(2)	1, 0	
143,144	· HA19 ~ 24		機能選択 説明
	· HA19 ~ 24		機能 1 PBD モジュール HA 19~ HA 24 (I) パラレルバス (デバイスモード) のアドレス HA 19~ HA 24 として
	· MII_TXD3, MII_TXD2,		使用します。
	MII_CRS,		機能2 EBIモジュール HA19~HA24(0)
	MII_COL,		パラレルバス (ホストモード) 動作時に EBI モジュールのアドレスと
	MII_RXD2,		カHA19~HA24として使用します。
	MII_RXD3		SMCモジュール選択時はADDR19~ADDR24を出力し、それり 外の期間はLow固定出力となります。
	SD_CLK, SD_nPWRERR,		機能3 ETHモジュール イーサネットMII I/F信号 (I/O)
	SD_POWER,		各端子ETHモジュールの以下の信号として使用します。
	SD_CMD,		・HA19:データ出力信号 MII_TXD3 として使用します。
	SD_DAT3,		・HA20:データ出力信号 MII_TXD2 として使用します。
	SD_DAT2 · GPI051 ~ GPI056		HA21: キャリア検出信号 MII_CRS として使用します。HA22: 衝突検出信号 MII_COL として使用します。
			・HA23:データ入力信号 MII_RXD2 として使用します。
			・HA24:データ入力信号 MII_RXD3 として使用します。
			機能4 SDCモジュール SDカードI/F信号 (I/O)
			各端子SDCモジュールの以下の信号として使用します。
			・HA19:クロック信号SD_CLKとして使用します。 ・HA20:電源異常検出信号SD_nPWRERRとして使用します。
			(負論理)
			・HA21:電源制御信号SD_POWERとして使用します。
			・HA22: コマンド信号SD_CMDとして使用します。
			・ HA23:データバス信号 SD_DAT3 として使用します。 ・ HA24:データバス信号 SD_DAT2 として使用します。
			GPIO GPIO1モジュール (ビット19~24) GPIO51~GPIO56 (I/O)
			3.13 SHOTE 24 70 (E21-10 24) OF 1001 - OF 1000 (1/0)
145	HA25	1/0	グループ28の設定により、端子機能を選択します。
	 - HA25		機能選択 説明
	· HA25		機能 1 PBDモジュール HA25 (I)
	· GPI057		パラレルバス(デバイスモード)のアドレスHA25として使用します
			機能2 EBIモジュール HA25 (0)
			パラレルバス (ホストモード) 動作時に EBI モジュールのアドレスと カHA25 として使用します。
			SMCモジュール選択時はADDR25を出力し、それ以外の期間に
			Low固定出力となります。
			GPIO GPIO1モジュール (ビット25) GPIO57 (I/O)

ピン番号	端子名	1/0	説明	
146,147,	HD0~HD15	1/0		9の設定により、端子機能を選択します。
148,149,			機能選択	説明
150,151, 152,153,	· HD0 ~ HD15 · HD0 ~ HD15		機能1	PBDモジュール HD0~HD15 (I/O)
154,155,	· CF_D0 ~ CF_D15		י טנוגעו	パラレルバス (デバイスモード) のデータバス HD0 ~ HD15 として
156,157,	· ATA_D0 ~ ATA_D15			使用します。
158,159,	· GPI00 ~ GPI015		機能2	EBIモジュール HD0~HD15 (I/O)
160,161				パラレルバス (ホストモード) 動作時に EBI モジュールのデータバス
				HDO~HD15として使用します。 EBIモジュールでSDMCモジュール、SMCモジュール、CFCモ
				ジュールのデータバスを調停します。
			機能3	CFCモジュール CF_D0~CF_D15 (I/O)
				CFC モジュールのデータバス CF_D0 ~ CF_D15 として使用します。
			機能4	ATAモジュール ATA_DO~ATA_D15 (I/O)
				ATA モジュールのデータバス ATA_DO ~ ATA_D15 として使用し
				ます。
			<u>GPIO</u>	GPI00モジュール(ビット0~15) GPI00~GPI015 (I/0)
162,163,	HD16~HD20	1/0	グループ30)の設定により、端子機能を選択します。
164,165,	164,165, 166		機能選択	説明
166			機能 1	PBDモジュール HD16~HD20 (I/0)
	· CF_nIOIS16,			パラレルバス (デバイスモード) のデータバス HD 16 ~ HD20 とし
	CF_RESET,			て使用します。
	CF_READY,		機能2	EBIモジュール HD16~HD20 (I/O) パラレルバス (ホストモード)
	CF_nCD			動作時にEBIモジュールのデータバス $HD16 \sim HD20$ として使用します。
	· ATA_nRESET, ATA_INTRQ			EBIモジュールでSDMCモジュール、SMCモジュールのデータバス
	CF_nCD			を調停します。
	· GPI016 ~ GPI020		機能3	CFC/BSCモジュール CFカードI/F信号 (I/O)
				各端子CFCモジュールの以下の信号として使用します。
				・HD16:CF_nIOCS16として使用します。(負論理) ・HD17:High固定出力。
				・HD18:CFカードリセット信号CF_RESETとして使用します。
				PCカードモード動作時は正論理、TruelDEモード動作時
				は負論理となります。
				・HD19:CF_READYとして使用します。
				· HD20: CF_nCDとして使用します。(負論理)
			機能4	ATA/BSC モジュール ATA I/F信号 (I/O) 各端子 ATA モジュールの以下の信号として使用します。
				・HD16:未使用です。
				· HD17: 未使用です。
				・HD18:ATAリセット信号ATA_nRESETとして使用します。
				(負論理) LID10: ATA INTRO I-I 7/5/8/1 + オ
				・HD19:ATA_INTRQとして使用します。 ・HD20:CF_nCDとして使用します。(負論理)
			GPIO	· ND20 · GP_NOD 2 U C 使用しより。(真細達) GP100モジュール(ビット16~20) GP1016~GP1020(I/O)
				3. 133 E2 1 70 (E2) 1 10 E0, 01 10 10 01 10 E0 (1/0)

ピン番号	端子名	1/0	説明	
167,168,	HD21~HD31	1/0		の設定により、端子機能を選択します。
169,170,			 機能選択	説明
171,172, 173,174,	· HD21 ~ HD31 · HD21 ~ HD31		機能1	PBDモジュール HD21~HD31 (I/O)
175,174,	· MII_TXD1,		. مراهرا	パラレルバス (デバイスモード) のデータバス HD21 ~ HD31 とし
177	MII_TXDO,			て使用します。
	MII_TXEN,		機能2	EBIモジュール HD21 ~ HD31 (I/0)
	MII_RXERR,			パラレルバス (ホストモード) 動作時にEBIモジュールのデータバス
	MII_RXDV,			HD21~HD31として使用します。 EBIモジュールでSDMCモジュール、SMCモジュールのデータバス
	MII_RXDO, MII_RXD1,			を調停します。
	MII_LINKUP,		———— 機能3	ETHモジュール イーサネット MII I/F 信号 (I/O)
	MII_WOL,			各端子ETHモジュールの以下の信号として使用します。
	MII_MDC,			・HD21:データ出力MII_TXD1信号として使用します。
	MII_MDIO			・HD22: データ出力MII_TXD0信号として使用します。
	SSP2_FS, SSP2_TXD,			・HD23:送信イネーブル MII_TXEN信号として使用します。 ・HD24:受信エラー MII_RXERR信号として使用します。
	SSP2_SCLK,			・HD25:受信有効MI_RXDV信号として使用します。
	SSP2_RXD,			・HD26:データ入力MII_RXDO として使用します。
	ARSTX,			・HD27:データ入力 MII_RXD 1 として使用します。
	ASYNC,			・HD28:リンクアップ MII_LINKUP入力として使用します。
	ASDI,			・HD29: ウェイクオンLAN信号 MII_WOL入力として使用します。
	ABCLK, ASDO,			・HD30:PHY制御信号 MII_MDC 信号として使用します。 ・HD31:PHY 制御信号 MII_MDIO 信号として使用します。
	SSPO_SPDIFOUT,		 機能4	SSP2/HDA/SSP0/SSP1 モジュール 各信号 (I/O)
	SSP1_SPDIFOUT		1100 HE	各端子以下の信号として使用します。
	· GPI021 ~ GPI031			・HD21:SSP2モジュールのSSP2_FS信号として使用します。
				・HD22:SSP2モジュールのSSP2_TXD信号として使用します。
				システムセカンダリ SSCSSP_SETUP レジスタの設定に
				より、SSP2_RXD入力としても使用できます。
				・HD23:SSP2モジュールのSSP2_SCLK信号として使用します。 ・HD24:SSP2モジュールのSSP2_RXD信号として使用します。
				システムセカンダリ SSCSSP_SETUP レジスタの設定に
				より、SSP2_SSPMCLK入力または出力としても使用で
				きます。
				・HD25:HDAモジュール ARSTX 出力として使用します。
				・HD26:HDA モジュール ASYNC 出力として使用します。 ・HD27:HDA モジュール ASDI 入出力として使用します。
				・HD28:HDAモジュールABCLK出力として使用します。
				・HD29:HDAモジュールASDO出力として使用します。
				・HD30:SSP0モジュールSSP0_SPDIFOUT信号として使用し
				ます。
				・HD31:SSP1 モジュールSSP1_SPDIFOUT信号として使用し
			GPIO	ます。 GPI00モジュール (ビット21~31) GPI021~GPI031 (I/0)
			- GPIU	GP100 E91-W (E9 K21 ~ 31) GP1021 ~ GP1031 (1/0)
178	MII_TXCLK		 太端子をFT	
		'	l	では、
	· ALT_CLK1			フロックについては、「4.2 クロック」 (F4-4 ページ) 参照。
	· MII_TXCLK			・ロングについていい [オ・ロンフ] [オ・オ・、 フ) 参加。
179	MII_RXCLK	1	本端子をET	HモジュールのMII_RXCLK入力として使用する場合は、端子グループ
			27を機能3	Bに設定する必要があります。
	· ALT_CLKO			フロックについては、「4.2 クロック」 (F4-4ページ) 参照。
	· MII_RXCLK			

ピン番号	端子名	1/0	説明	
182,183,	DV0_D0~DV0_D12	1/0		D設定により、端子機能を選択します。
184,185,			機能選択	説明
186,187, 188,189,	· DV0_D0 ~ DV0_D12 · VID_D0 ~ VID_D12		機能2	VODモジュール DVO_D0~DVO_D12(0)
190,195,	· GPI064 ~ 76			デジタル映像出力の出力データ DVO_D0 ~ DVO_D12です。
196,197, 198				ビットアサインについては、「5.3 表示出力」(F5-30ページ)参照。
			機能3	VIDモジュール VID_DO ~ VID_D12 (I) デジタルビデオキャプチャの入力データ VID_DO ~ VID_D12です。
				ビットアサインについては、「6.4 デジタルビデオ入 力」(F6-14ページ)参照。
			GPI0	GPI02モジュール(ビット0~12) GPI064~GPI076 (I/0)
199	DV0_D13	1/0	グループ30	ひ設定により、端子機能を選択します。
	· DOT_CLK1		機能選択	説明
	· DVO_D13 · VID_D13 · GPI077		機能1	DOT_CLK1 (I/O) デジタル映像出力/デジタルビデオキャプチャで使用するドットク ロック入出力DOT_CLK1 端子として使用します。
				クロックの方向はSSCSSP_SETUP レジスタで設定します。
				クロックについては、「4.2 クロック」(F4-4ページ) 参照。
			機能2	VODモジュール DVO_D13 (O) デジタル映像出力の出力データ DVO_D13 です。
				ビットアサインについては、「5.3 表示出力」(F5-30ページ)参照。
			機能3	VIDモジュール VID_D13 (I) デジタルビデオキャプチャの入力データ VID_D13です。
				ビットアサインについては、「6.4 デジタルビデオ入力」(F6-14ページ)参照。
			GPI0	GPI02モジュール (ビット 13) GPI077 (I/0)
200,201,	DV0_D14 ~ DV0_	1/0	グループ40	の設定により、端子機能を選択します。
202,203,	D23		機能選択	説明
204,205, 206,207, 208,209	·DV0_D14 ~ DV0_D23 ·VID_D14 ~ VID_D23		機能2	VODモジュール DVO_D14~DVO_D23 (O) デジタル映像出力の出力データDVO_D14~DVO_D23です。
	· GPI078 ~ GPI087			ビットアサインについては、「5.3 表示出力」(F5-30ページ)参照。
			機能3	VIDモジュール VID_D14~ VID_D23 (I) デジタルビデオキャプチャの入力データ VID_D14~ VID_D23です。
				ビットアサインについては、「6.4 デジタルビデオ入 力」(F6-14ページ)参照。
			GPI0	GPI02モジュール (ビット14~23) GPI078~GPI087 (I/0)

端子名	1/0	説明
DVO_VSYNC	1/0	グループ5の設定により、端子機能を選択します。
		機能選択 説明
I .		機能2 VODモジュール DVO_VSYNC (0)
_		デジタル映像出力の出力データDVO_VSYNCとして使用します。
		機能3 VIDモジュール VID_VSYNC (I)
		デジタルビデオキャプチャの VID_VSYNC として使用します。
		GPIO GPIO2モジュール (ビット24) 端子 GPIO88 (I/O)
DVO_HSYNC	1/0	グループ5の設定により、端子機能を選択します。
. DVO HSVNC		機能選択 説明
I .		機能2 VODモジュール DVO_HSYNC (0)
_		デジタル映像出力の出力データ DVO_HSYNC として使用します。
0000		機能3 VIDモジュール VID_HSYNC (I)
		デジタルビデオキャプチャの VID_HSYNC として使用します。
		GPIO GPI02モジュール (ビット25) GPI089 (I/0)
DVO DE	1/0	グループ5の設定により、端子機能を選択します。
	1/0	
· DVO_DE		機能選択 説明
· VID_DE		機能2 VODモジュール DVO_DE(0)
· GPI090		デジタル映像出力の出力データ DVO_DE として使用します。
		機能3 VIDモジュール VID_DE (I)
		デジタルビデオキャプチャの VID_DE として使用します。
		GPIO GPI02モジュール (ビット26) GPI090 (I/0)
DVO_FIELD	1/0	グループ5の設定により、端子機能を選択します。
		186 AL ASS-1 → SM DE
· DVO_FIELD		機能選択 説明
_		機能2 VODモジュール DVO_FIELD (O) デジタル映像出力の出力データ DVO_FIELD として使用します。
· GPI091		
		機能3 VIDモジュール VID_FIELD(I) デジタルビデオキャプチャの VID_FIELD として使用します。
		GPIO GPIO2モジュール(ビット27) GPIO91 (I/O)
		GPIO GPIO2 T 9 1 (L 9 \ 27) GPIO3 1 (1/0)
DVO_CDE	1/0	グループ5の設定により、端子機能を選択します。
, DVO CDE		機能選択 説明
		機能2 VODモジュール DVO_CDE (0)
011002		デジタル映像出力の出力データDVO_CDEとして使用します。
		GPIO GPIO2モジュール (ビット28) GPIO92 (I/O)
DVO 0114	1./0	
DVU_CLK	1/0	アジタル映像出力/デジタルビデオキャプチャで使用するドットクロック入出力
L DOT CLKO		DOT_CLKO端子として使用します。
. DOI_CLKU		クロックの方向は SSCDSP_SETUP レジスタで設定します。
		クロックについては、「4.2 クロック」(F4-4ページ) 参照。
	DVO_VSYNC · DVO_VSYNC · VID_VSYNC · GPIO88 DVO_HSYNC · DVO_HSYNC · VID_HSYNC · VID_HSYNC · GPIO89 DVO_DE · DVO_DE · VID_DE · GPIO90 DVO_FIELD · DVO_FIELD · GPIO91	DVO_VSYNC DVO_VSYNC VID_VSYNC GPI088 DVO_HSYNC VID_HSYNC VID_HSYNC GPI089 DVO_DE VID_DE VID_DE GPI090 DVO_FIELD VID_FIELD OPO_FIELD OPO_CDE DVO_CDE DVO_CDE OPO_CDE

内蔵DRAM用端子

ピン番号	端子名	1/0	説明
28	DDR_VREFCA	_	内蔵 DRAM 用基準電圧 0.9V を印加してください。 内蔵 DRAM 用基準電源については、「15.2 推奨動作条件」(F15-3 ページ) の 「DDR 基準電圧 (DDR_VREFCA 端子)」参照。
29	DDR_ZQ	_	内蔵 DRAM 用基準抵抗を接続します。 (240 Ω 1%の抵抗を経由してグラウンドに接続)
30	DDR_RDRVN	_	DDR コントローラ用基準抵抗 (240 Ω 1%の抵抗を経由して 1.8Vに接続)
31	DDR_RDRVP	_	DDRコントローラ用基準抵抗 (240Ω1%の抵抗を経由してグラウンドに接続)

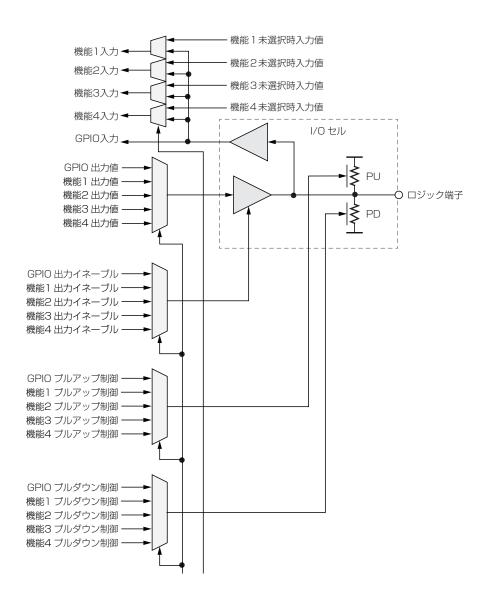
LVDS トランスミッタ用端子

ピン番号	端子名	1/0	説明
226	FPD1_TX3N	0	LVDS1 出力用データ3 (-) 出力
227	FPD1_TX3P	0	LVDS1 出力用データ3 (+) 出力
228	FPD1_TX2N	0	LVDS1 出力用データ2 (-) 出力
229	FPD1_TX2P	0	LVDS1 出力用データ2 (+) 出力
231	FPD1_TXRPI	_	LVDS1 基準抵抗を接続します。
			(18kΩ1%の抵抗を経由してグラウンドに接続)
233	FPD1_TXCN	0	LVDS1 出力用クロック (-) 出力
234	FPD1_TXCP	0	LVDS1 出力用クロック (+) 出力
235	FPD1_TX1N	0	LVDS1 出力用データ 1 (-) 出力
236	FPD1_TX1P	0	LVDS1 出力用データ1 (+) 出力
237	FPD1_TXON	0	LVDS1 出力用データ 0 (-) 出力
238	FPD1_TX0P	0	LVDS1 出力用データ0 (+) 出力
241	FPD0_TX3N	0	LVDSO出力用データ3(-)出力
242	FPD0_TX3P	0	LVDSO出力用データ3(+)出力
243	FPD0_TX2N	0	LVDSO出力用データ2(-)出力
244	FPD0_TX2P	0	LVDSO出力用データ 2 (+) 出力
246	FPD0_TXRPI	_	LVDSO基準抵抗を接続します。
			(18kΩ1%の抵抗を経由してグラウンドに接続)
248	FPD0_TXCN	0	LVDSO出力用クロック (-) 出力
249	FPD0_TXCP	0	LVDSO出力用クロック (+) 出力
250	FPD0_TX1N	0	LVDSO出力用データ 1 (-) 出力
251	FPD0_TX1P	0	LVDSO出力用データ 1 (+) 出力
252	FPD0_TX0N	0	LVDSO出力用データO(-)出力
253	FPD0_TX0P	0	LVDSO出力用データO(+)出力

コンポジットビデオ入力用端子

ピン番号	端子名	1/0	説明
98	CVINO	1	アナログビデオ入力 CHO コンポジットビデオ入力端子
95	CVIN1	1	アナログビデオ入力CH1 コンポジットビデオ入力端子
93	CVIN2	1	アナログビデオ入力CH2 コンポジットビデオ入力端子
90	CVIN3	1	アナログビデオ入力CH3 コンポジットビデオ入力端子
88	CVIN_REXT	_	ビデオADC用基準抵抗を接続します。
			(10kΩ1%の抵抗を経由してグラウンドに接続)

USB用端子


ピン番号	端子名	1/0	説明
221	USB_DM	1/0	USB データ端子 (-)
222	USB_DP	1/0	USB データ端子 (+)
225	USB_RREF	_	USB用基準抵抗を接続します。(12k Ω 1%の抵抗を経由してグラウンドに接続)

2.4 回路構成

AG903の入出力端子と回路構成について説明します。

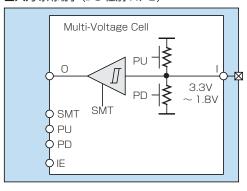
ロジック端子の回路構成

AG903では、多くの機能を内蔵するため、いくつかの機能を選択する仕組みを持っています。 ロジック端子の基本的な回路構成を以下に示します。

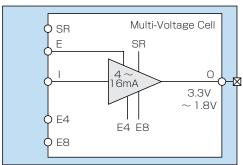
- ・ブートモードによりリセット時に選択される機能およびGPIOの選択内容が決まります。
- ・SSCPIN_FUNCO/1 レジスタを使用し、グループ単位で端子機能を選択します。
- ・SSCPIN_GPIO_ENABLEn レジスタを使用し、端子単位で GPIO 機能を選択します。

ロジック端子の出力に関する真理値表を示します。

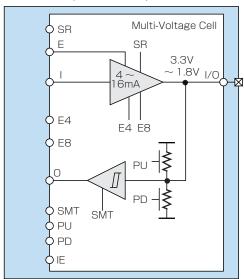
GPIO Enable	FUNC	ロジック端子出力	プルアップ/プルダウン制御
1b	don't care	GPIO 出力	GPIOの制御、端子設定の論理和
Ob	00b	機能1出力	機能1の制御、端子設定の論理和
Ob	01b	機能2出力	機能2の制御、端子設定の論理和
Ob	10b	機能3出力	機能3の制御、端子設定の論理和
Ob	11b	機能4出力	機能4の制御、端子設定の論理和


- ・GPIO Enable: SSCPIN_GPIO_ENABLE0 ~ 3 レジスタの該当ビット
- ・FUNC: SSCPIN_FUNC0/1 レジスタの該当ビット
- ・各機能の入力は当該機能を選択した場合のみ、端子からの入力が反映されます。選択されていない機能の入力は常にインアクティブとなります。
- ・GPIOの入力はGPIOを使用するしないにかかわらず、常に端子からの入力が反映されます。

I/Oセルの構成


AG903ではロジック端子用のI/Oセルとして、A~Eの5種類のI/Oセルを使用しています。

I/O 種別	機能	出力能力		使用数	備考
		3.3V	1.8V		
А	入力バッファ	_	_	4	常にプルダウン
В	入力バッファ	_	_	8	
С	出力バッファ	4∼16mA	1.8 ~ 7.2mA	1	
D	双方向バッファ	4∼16mA	1.8 ~ 7.2mA	109	
Е	双方向高速バッファ	4~16mA	2.1 ~ 8.4mA	30	170MHz対応I/Oセル

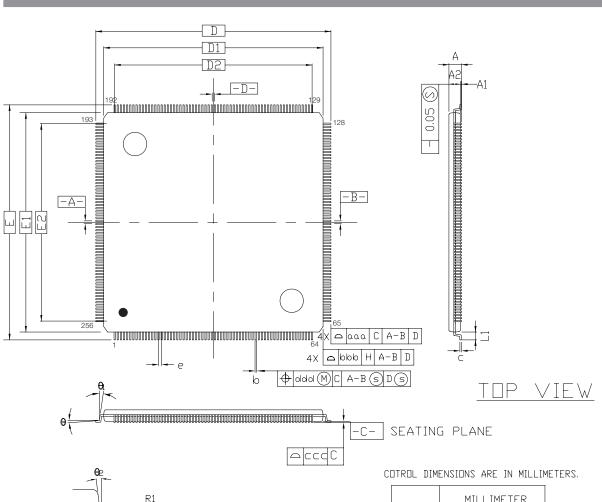

■入力専用端子 (I/O 種別 A、B)

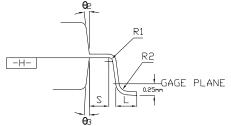
■出力専用端子 (I/O 種別 C)

■入出力端子 (I/O 種別 D、E)

内部ポート	機能	I/O種別
Е	出力イネーブル	C, D, E
E8, E4	出力駆動能力設定	C, D, E
SR	出力スルーレート設定	C, D
SMT	入力シュミット機能設定	A, B, D, E
PU	プルアップ (75k Ω) 設定	A, B, D, E
PD	プルダウン(75kΩ)設定	A, B, D, E
IE	入力イネーブル・レベルキープ設定	A、B、D、E

IE/PU/PDビットの組み合わせにより、レベルキープ動作を設定できます。 ビットの設定と動作については端子処理設定データレジスタ*SSCPIN_SETUP_DATA* (R1-19ページ) 参照

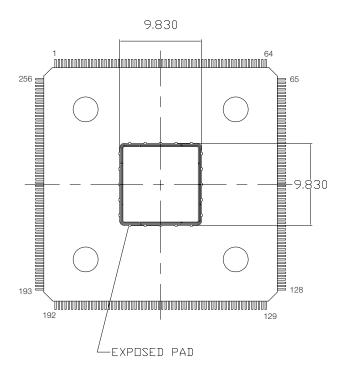

2.5 アナログ回路未使用時の端子処理


デバイスの安定動作、信頼性を確保するため、本LSIのアナログ回路を使用しない場合も、正しい端子処理を行う必要があります。以下の表に従って適宜端子処理を行ってください。

種類	端子名	処理方法	条件
電源端子	すべて	すべての電源端子に対して電源供給すること	
クロック端子	XIN	発振子未使用時はオープンとすること	
内蔵 DRAM	DDR_VREFCA DDR_ZQ DDR_RDRVN DDR_RDRVP	未使用時も規定通りの端子処理を行うこと	
LVDS トランスミッタ	FPD0/1_TX0/1/2/3P/N FPD0/1_TXCP/N	未使用時オープン可	
	FPD0/1_TXRPI	未使用時オープン可 または規定の抵抗を接続	チャンネルごとに 独立
_ コンポジット ビデオ入力	CVINO CVIN1 CVIN2 CVIN3	全チャネル未使用時:オープンまたは GND に接続 一部チャネル未使用時: GND に接続	オープン時、ADC をスタンバイ保持 すること
	CVIN_REXT	全チャネル未使用時:オープンまたは規定の抵抗を接続 一部チャネル未使用時:規定の抵抗を接続	
USB	USB_DM USB_DP	オープン	サスペンドモード を保持すること
	USB_RREF	オープンまたは規定の抵抗を接続	

3章 パッケージ

3.1 外形図



	256L				
SYMBOL	MILLIMETER				
	MIN.	N□M.	MAX.		
b	0.130	0.160	0.230		
9	0.400 BSC.				
D2	25.200				
E2	25.200				
TOLERANCES	OF FORI	M AND PI	NOITIZC		
aaa		0.200			
bbb	0.200				
CCC	0.080				
ddd		0.070			

SYMBOL	MILLIMETER				
2 I MIDUL	MIN.	N□M.	MAX.		
Α			1.600		
A1	0.050		0.150		
A2	1.350	1.400	1.450		
D	30).000 RE	EF.		
D ₁	28	3.000 RE	ĒF.		
Е	30,000 REF.				
E ₁	28.000 REF.				
Ra	0.080		0.200		
R ₁	0.080				
Θ	0°	3.5°	7°		
Θ1	0°				
θг	11°	12°	13°		
θз	11°	12°	13°		
С	0.090		0.200		
L	0.450	0.600	0.750		
L 1	1	.000 R	EF.		
S	0.200				

PKG BOTTOM SIDE

- 1. DIMENSIONS D1 AND E1 DO NOT INCLUDE MOLD PROTRUSION.
- 2. DIMENSION & DOES NOT INCLUDE DAMBAR PROTRUSION.
 ALLOWABLE DAMBAR PROTRUSION SHALL NOT CAUSE THE
 LEAD WIDTH TO EXCEED THE MAXIMUM & DIMENSION BY
 MORE THAN 0.08mm.
 - DAMBAR CAN NOT BE LOCATED ON THE LOWER RADIUS OR THE FOOT. THE MINIMUM SPACE BETWEEN PROTRUSION AND AN ADJACENT LEAD SHALL NOT BE LESS THAN 0.07mm.
- 3. THE TOP PACKAGE BODY SIZE MAY BE SMALLER THAN THE BOTTOM PACKAGE BODY SIZE.

3.2 捺印仕様

AX51903捺印仕様

AX51903G 捺印仕様

4章 電気的特性

AG903の電気的特性を以下に示します。

4.1 絶対最大定格

項目	記号	最小	最大	単位	対象電源端子
ロジックコア電源電圧	VCCK	- 0.5	1.4	V	VCCK
ロジック端子用電源電圧	VCC3IO	- 0.5	4.6	V	VCCIO1、VCCIO2
DDRコントローラ用電源電圧	VCCDDRIO *1	- 0.5	2.3	V	VCCDDRIO
	VCCDDRCD *1				VCCDDRCK, VCCDDRDQ
DDRコントローラPLL用電源電圧	VCCDDRPLL *1	- 0.5	1.4	V	VCCA11DDRPLL
内蔵DRAM電源電圧	VCCD	- 0.5	2.3	V	VCCDRAM
発振セル用電源電圧	VCCA330SC	- 0.5	4.6	V	VCCA330SC
内蔵PLL1、2、3用電源電圧	VCCD11PLL123	- 0.5	1.4	V	VCCD11PLL123
内蔵PLLO用電源電圧	VCCA11PLLO				VCCA11PLLO
アナログビデオ入力用PLL電源電圧	VCCD11PLLV	- 0.5	1.4	V	VCCD11PLLV
	VCCD33PLLV	- 0.5	4.6	V	VCCD33PLLV
	VCCA33PLLV				VCCA33PLLV
アナログビデオ入力用電源電圧	VCCA18CVIN	- 0.5	2.3	V	VCCA18CVINO1/23
USB2.0用電源電圧	VCCA33USBHS	- 0.5	4.6	V	VCCA33USBHS
USB2.0用PLL電源電圧	VCCA33USBPLL				VCCA33USBPLL
LVDSトランスミッタ用電源電圧	VCCA33FPD	- 0.5	4.6	V	VCCA33FPD0/1
	VCCA11FPD	- 0.5	2.3	V	VCCA11FPDO/1
ロジック端子入力電圧	VIN3	- 0.5	4.6	V	_
ロジック端子DC入力電流	liN	- 50	50	mA	_
ロジック端子出力短絡電流	lout				
保存温度範囲	TSTG	- 50	150	$^{\circ}$	_
動作時ジャンクション温度	Tj	-40	125		

^{*1} VCCDDRIO、VCCDDRCD、VCCDDRPLLが500mVを下回るときは、DDR_VREFCA端子電圧は300mV以下にしてください。

4.2 推奨動作条件

項目	記号	最小	標準	最大	単位
ロジックコア電源電圧	VCCK	1.15 – 5%	1.15	1.15 + 5%	V
ロジック端子用電源電圧(3.3V動作時)	ACC310	3.3 - 5%	3.3	3.3 + 5%	V
ロジック端子用電源電圧(1.8V動作時)		1.8 – 5%	1.8	1.8 + 5%	V
DDRコントローラ用電源電圧	VCCDDRIO	1.8 – 5%	1.8	1.8 + 5%	V
	VCCDDRCD				
DDR コントローラ PLL 用電源電圧	VCCDDRPLL	1.15 – 5%	1.15	1.15 + 5%	V
DDR基準電圧(DDR_VREFCA端子)	VREF *1	0.49 × VCCD	0.50 × VCCD	0.51 × VCCD	V
内蔵DRAM電源電圧	VCCD	1.8 – 5%	1.8	1.8 + 5%	V
発振セル用電源電圧	VCCA330SC	3.3 – 5%	3.3	3.3 + 5%	V
内蔵PLL1、2、3用電源電圧	VCCD11PLL123	1.15 – 5%	1.15	1.15 + 5%	V
内蔵PLLO用電源電圧	VCCA11PLLO				
アナログビデオ入力用PLL電源電圧	VCCD11PLLV	1.15 – 5%	1.15	1.15 + 5%	V
	VCCD33PLLV	3.3 – 5%	3.3	3.3 + 5%	V
	VCCA33PLLV				
アナログビデオ入力用電源電圧	VCCA18CVIN	1.8 – 5%	1.8	1.8 + 5%	V
USB2.0用電源電圧	VCCA33USBHS	3.3 – 5%	3.3	3.3 + 5%	V
USB2.0用PLL電源電圧	VCCA33USBPLL				
LVDSトランスミッタ用電源電圧	VCCA33FPD	3.3 – 5%	3.3	3.3 + 5%	V
	VCCA11FPD	1.15 – 5%	1.15	1.15 + 5%	V
周囲温度	Ta *2	0 (AX51903) -40(AX51903G)	25	70	°C

^{*1} ACノイズ(Peak-to-Peak)は±2%を超えないようにしてください。

ジャンクション温度により、内蔵DRAMのリフレッシュレートのスペックが変わります。

- ・85 \mathbb{C} < T_j \leq 95 \mathbb{C} の場合: リフレッシュコマンドの周期は 32ms 以下 (tREFI=3.9 μ s)
- ·95℃<T_j≦ 125℃の場合:リフレッシュコマンドの周期は16ms以下(tREFI=1.95 µs)

^{*2} 絶対最大定格で規定する Tiの範囲を超えないようにしてください。

4.3 消費電流

条件:推奨動作条件

項目	記号	最小	標準	最大	単位
消費電流(1.15V 系)	IDD11	_	_	3200	mA
消費電流(1.8V 系)	IDD18			630	
消費電流 (3.3V 系)	IDD33			360	
消費電力(全体)	PTOTAL	_	_	6.3	W

4.4 電源投入シーケンス

AG903では電源投入順番は規定しません。しかし、以下の手順で電源投入を行うことで、電源投入時の突入電流を最小化できます。

· VCCKの電源投入→ VCCIO1、VCCIO2、およびその他の電源投入

4.5 DC 特性

I/O電圧3.3V動作時のロジック端子DC特性

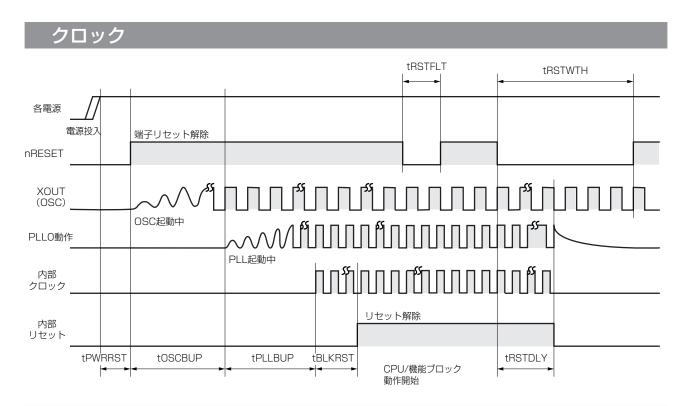
条件:推奨動作条件

項目	記号	条件	最小	標準	最大	単位
Low レベル入力電圧	Vil	3.3V LVTTL	_	_	0.8	V
High レベル入力電圧	Vih		2.0	_	_	
シュミットトリガしきい値電圧 (High→Low)	Vt –	3.3V LVTTL	0.8	1.1	_	
シュミットトリガしきい値電圧 (Low→High)	V _t +		_	1.6	2.0	
Low レベル出力電圧	Vol	$ o = 2mA \sim 16mA$	_	_	0.4	
High レベル出力電圧	Voh	$ loh = 2mA \sim 16mA$	2.4	_	_	
入力プルアップ抵抗	Rpu	PU = High, PD = Low	40	75	190	kΩ
入力プルダウン抵抗	Rpd	PU = Low, PD = High				

I/O電圧 1.8V動作時のロジック端子 DC 特性

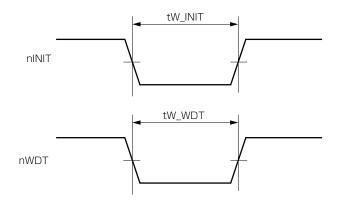
条件:推奨動作条件

項目	記号	条件	最小	標準	最大	単位
Low レベル入力電圧	Vil	1.8V LVTTL	_	ı	0.3 × VCCIO	V
High レベル入力電圧	Vih		0.7 × VCCIO		_	
シュミットトリガしきい値 電圧 (High→Low)	Vt-	1.8V LVTTL	0.3 × VCCIO	0.6	_	
シュミットトリガしきい値 電圧 (Low→High)	V _{t+}		_	1.0	0.7 × VCCIO	
Low レベル出力電圧	Vol	$ I_{OI} = 0.9 \text{mA} \sim 7.2 \text{mA}$	_	_	0.4	
High レベル出力電圧	Voh	$ I_{Oh} = 0.9 \text{mA} \sim 7.2 \text{mA}$	0.75 × VCCIO	_	_	
入力プルアップ抵抗	Rpu	PU = High, PD = Low	60	142	400	kΩ
入力プルダウン抵抗	Rpd	PU = Low、PD = High				


入力リーク電流および入力セル容量

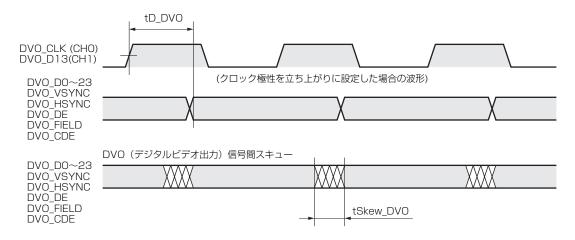
条件:推奨動作条件

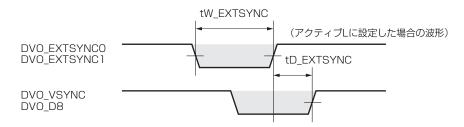
項目	記号	条件	標準	単位
入力リーク電流 (ロジック端子)	liN	Vin=VCCIO1or 2、またはOV	<±1	μΑ
入力容量	CIN	_	2.1	pF


4.6 AC特性

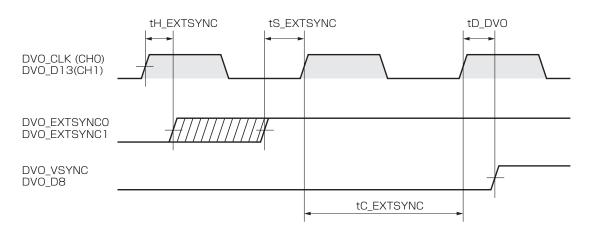
特記事項がない場合「外部負荷 10pF」、「I/O 出力能力 8mA」で算出しています。

項目		記号	最小	標準	最大	単位	備考
起動シーケンス	電源投入時リセット 保持時間	tPWRRST	100	_	ı	μs	電源投入時Lowレベル を保持してください
	OSC起動安定時間	tOSCBUP	ı	3.4	10	ms	27MHz水晶使用時 /52244 OSCクロック
	PLL 起動安定時間	tPLLBUP	ı	163	200	μs	27MHz水晶使用時 /4096 OSCクロック
	内部回路リセット解除 時間	tBLKRST	_	82	100	μs	27MHz水晶使用時 /2048 OSCクロック
端子リセット	端子リセットノイズ フィルタ時間	tRSTFLT	ı	_	82	μs	27MHz水晶使用時 /2048 OSCクロック
	端子リセットパルス幅	tRSTWTH	150	_	١	μs	27MHz水晶使用時 /3072 OSCクロック
	端子リセット応答遅延 時間	tRSTDLY	1	205	250	μs	27MHz水晶使用時 /5120 OSCクロック
クロック (XIN/XOUT端子)	OSC クロック周波数	fOSCXOUT	ı	24/25/27 /30/48/50	-	MHz	
	デューティ比		30	_	70	%	
	周波数精度		_	_	50	ppm	
	外部入力時サイクル ジッター	jOSCXOUT	١	_	100	ps	
クロック (ALT_CLKO/1端子)	ALT クロック PLL 入力 周波数	fALTCLKIN	5	_	110	MHz	
	デューティ比		30	_	70	%	
	周波数精度		_	_	150	ppm	
	ALT クロック PLL 出力 周波数	fALTCLKOUT	20	_	300	MHz	

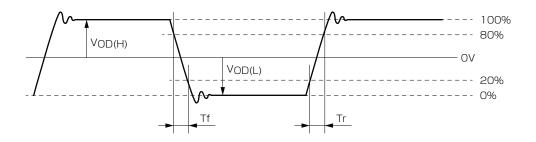

リセット

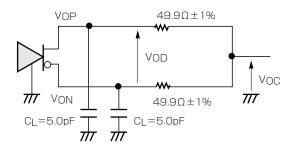

項目		記号	最小	標準	最大	単位	備考
INIT入力	nINIT最低パルス幅	tW_INIT	200	_	П		24MHz水晶使用時/40SC クロック
WDT入力	nWDT最低パルス幅	tW_WDT	200	_	_		24MHz水晶使用時/40SC クロック

表示(CMOS)


■DVO (デジタルビデオ出力) タイミング

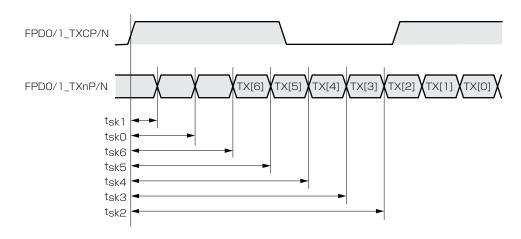
■DVO (デジタルビデオ出力) 外部同期入力-非同期設定時

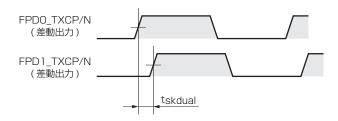

■ DVO (デジタルビデオ出力) 外部同期入力 – 同期設定時


項目		記号	最小	標準	最大	単位	備考
ドットクロック (出力)	周波数	t fDVODCLKO		_	170	MHz	出力先端子 (CHO: DVD_CLK端子、 CH1: DVO_D13端子)
	デューティ比	dutyDVODCLKO	45	_	55	%	内蔵 PLL 使用時
	サイクルジッタ	jDVODCLK	_	_	± 552.5	ps	PLL使用時:~40MHz
	(p-p)		_	_	± 422.5	ps	PLL 使用時:40 ~ 75MHz
			_	_	±260	ps	PLL使用時:75 ~ 150MHz
			_	_	± 130	ps	PLL 使 用 時:150 ~ 170MHz
ドットクロック (入力)	周波数	fDVODCLKI	4	_	170	MHz	出力先端子 (CHO: DVD_CLK端子、 CH1: DVO_D13端子)
	デューティ比	dutyDVODCLKI	30	_	70	%	
クロックーデー	送信側出力遅延	tD_DV0	0	_	1.2	ns	クロック出力時
夕遅延			6	_	12.8	ns	クロック入力時
スキュー	出力データスキュー	tSkew_DV0	_	_	1.2	ns	クロック出力時、入力時ともに
外部同期入力	入力パルス幅	tW_EXTSYNC	16	_	_	ns	3システムクロック周期以上
(非同期設定時)	入力遅延時間	tD_EXTSYNC	9 × SYSCLK + 3 × DCLK + 6	_	12 × SYSCLK + 10 × DCLK + 12.8	ns	SYSCLK:システムクロック 周期(5~5.12ns) DCLK:ドットクロック周期
外部同期入力	入力セットアップ	tS_EXTSYNC	8	_	_	ns	クロック出力時
(同期設定時)			- 1.7	_	_	ns	クロック入力時
	入力ホールド	tH_EXTSYNC	-4	_	_	ns	クロック出力時
			6.2	_	_	ns	クロック入力時
	入力遅延時間	tC_EXTSYNC		1	_	DCLK	DCLK: ドットクロック周期

表示 (LVDS)

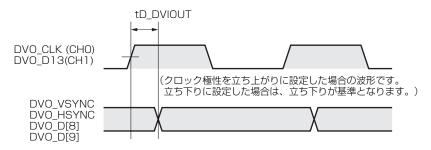
■立ち上がり/立ち下がり時間

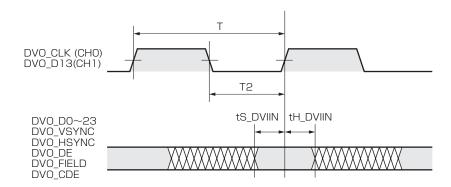

■出力特性測定条件


項目	記号	最小	標準	最大	単位	備考
差動出力電圧	VOD	250	350	450	mV	$R_L = 100 \Omega$, $C_L = 5.0pF$
反転時VOD変動電圧	ΔVOD	_	_	50	mV	$RL = 100 \Omega$, $CL = 5.0pF$
コモンモード電圧	Voc	1.125	1.25	1.375	V	$R_L = 100 \Omega$, $C_L = 5.0pF$
反転時VOC変動電圧	ΔVOC	_	_	50	mV	$RL = 100 \Omega$, $CL = 5.0pF$
出力短絡時電流	los	_		±24	mA	$V_{OUT} = 0V$, $R_L = 100 \Omega$
出力リーク電流	loz	_	_	±10	uA	VOUT = OV ~ VCC、パワーダウン時
出力立ち上がり/立ち下がり	Tr/Tf	0.26	_	$0.3 \times t_{ui}$	ns	CL = 5.0pF、VOD 20%~80% 遷
時間						移時間

^{*} tui: T/7 (T: ドットクロック周期[ns])

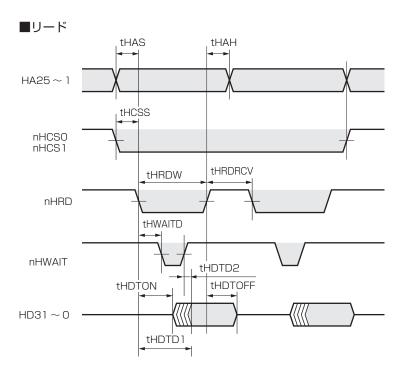
■チャンネル内スキュー

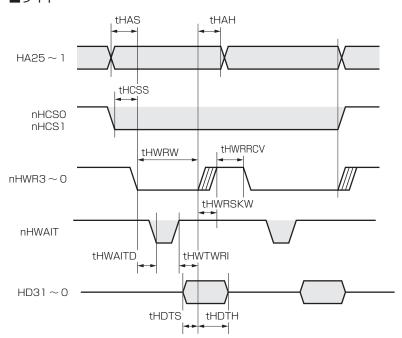

■チャンネル間スキュー


項目	記号	最小	標準	最大	単位	備考
ドットクロック周期	Т	11.75	- 80		ns	12.5 ~ 85MHz
スキュー基準値	tsk	0	-	0.2	ns	$RL = 100 \Omega$
						CL=5.0pF、85MHz≦T時
		0	_	0.017×T	ns	$RL = 100 \Omega$
						CL = 5.0pF,
						42.5MHz≦T≦85MHz時
		0	_	0.4	ns	$RL = 100 \Omega$, $CL = 5.0pF$,
						T≦42.5MHz時
クロック-データ間スキュー 1	tsk1	$0 \times T/7 - t_{SK}$	0×T/7	$0 \times T/7 + t_{SK}$	ns	$R_L = 100 \Omega$, $C_L = 5.0pF$
クロック-データ間スキュー 0	tsk0	$1 \times T/7 - t_{SK}$	1×T/7	$1 \times T/7 + t_{SK}$	ns	$R_L = 100 \Omega$, $C_L = 5.0 pF$
クロック・データ間スキュー6	tsk6	$2 \times T/7 - t_{SK}$	2×T/7	$2 \times T/7 + t_{SK}$	ns	$R_L = 100 \Omega$, $C_L = 5.0pF$
クロック-データ間スキュー5	tsk5	$3 \times T/7 - t_{SK}$	3×T/7	$3 \times T/7 + t_{SK}$	ns	$R_L = 100 \Omega$, $C_L = 5.0 pF$
クロック・データ間スキュー4	tsk4	$4 \times T/7 - t_{SK}$	4×T/7	$4 \times T/7 + t_{SK}$	ns	$R_L = 100 \Omega$, $C_L = 5.0pF$
クロック・データ間スキュー3	tsk3	$5 \times T/7 - t_{Sk}$	5×T/7	$5 \times T/7 + t_{SK}$	ns	$R_L = 100 \Omega$, $C_L = 5.0 pF$
クロック・データ間スキュー2	tsk2	$6 \times T/7 - t_{sk}$	6×T/7	$6 \times T/7 + t_{SK}$	ns	$RL = 100 \Omega$, $CL = 5.0pF$
チャンネル間スキュー	tskdual	- T/7	_	T/7	ns	$R_L = 100 \Omega$, $C_L = 5.0pF$

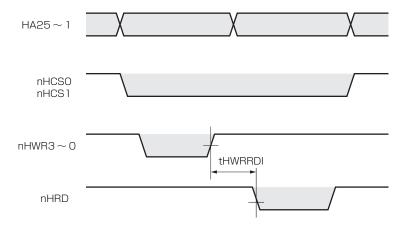
キャプチャ

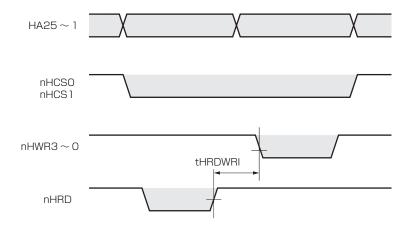
■ DVI (デジタルビデオ入力) 同期信号出力タイミング


■DVI (デジタルビデオ入力) 信号入力タイミング

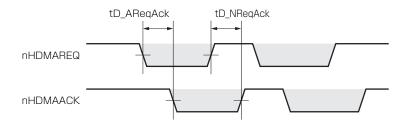

項目	項目		最小	標準	最大	単位	備考
クロック周波数	ドットクロック周波 数	fDVIDCLK	4	_	170	MHz	CHO、CH1ともにDVO_CLK、 DVO_D13端子
クロックジッタ	ドットクロック出力	jDVIDCLK	_	_	± 552.5	ps	PLL使用時:~40MHz
	サイクルジッタ		_	_	± 422.5	ps	PLL使用時:40 ~ 75MHz
	(p - p)		_	_	±260	ps	PLL使用時:75 ~ 150MHz
			_	ı	± 130	ps	PLL使用時:150~170MHz
クロック出力- 同期信号出力	送信側出力遅延	tD_DVIOUT	0	_	1.2	ns	CHO, CH1
ビデオデータ入 カタイミング	入力セットアップ (CHO)	tS_DVIIN	T-4.8	_	_	ns	ドットクロック入力時 T: ドットクロック周期 [ns]
	入力ホールド(CHO)	tH_DVIIN	7.0 – T	_	_		VIDIOnMOD.CPOL = Ob 設定時
	入力セットアップ (CH1)	tS_DVIIN	T-6.7	_	_		
	入力ホールド(CH1)	tH_DVIIN	8.1 – T	_	_		
ビデオデータ入 カタイミング	入力セットアップ (CHO)	tS_DVIIN	T2 – 4.8	_	_	ns	ドットクロック入力時 T2: ドットクロックLOW幅[ns]
	入力ホールド(CHO)	tH_DVIIN	7.0 – T2	_	-		VIDIOnMOD.CPOL = 1b 設定時
	入力セットアップ (CH1)	tS_DVIIN	T2 - 6.7	_	_		
	入力ホールド(CH1)	tH_DVIIN	8.1 – T2	_	_		
ビデオデータ入 カタイミング	入力セットアップ (CHO)	tS_DVIIN	6.9-T	_	_	ns	ドットクロック出力時 T: ドットクロック周期 [ns]
	入力ホールド(CHO)	tH_DVIIN	T – 4.5		_		VIDIOnMOD.CPOL=0b 設定時
	入力セットアップ (CH1)	tS_DVIIN	6.2-T	_	_		
	入力ホールド(CH1)	tH_DVIIN	T-4.6		_		
ビデオデータ入 カタイミング	入力セットアップ (CHO)	tS_DVIIN	6.9 – T2	ı	_	ns	ドットクロック出力時 T2:ドットクロックLOW幅[ns]
	入力ホールド(CHO)	tH_DVIIN	T2 - 4.5	_	_		VIDIOnMOD.CPOL=1b設定時
	入力セットアップ (CH1)	tS_DVIIN	6.2 – T2	_	_		
	入力ホールド(CH1)	tH_DVIIN	T2 – 4.6	_	_		

パラレルバス (デバイスモード)


リード/ライト


■ライト

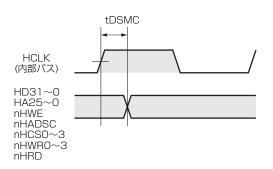
■ライト後リード


■リード後ライト

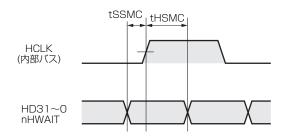
項目	記号	最小	最大	単位	備考
アドレスセットアップ	tHAS	0	_	ns	
アドレスホールド	tHAH	0	_	ns	
CSセットアップ	tHCSS	0	_	ns	CSO⇔CS1切り替え時、 3システムクロックのリカバリタイム が必要
リードストローブ幅	tHRDW	6CK	_	SYSCLK	
ライトストローブ幅	tHWRW	3CK	_	SYSCLK	
リードリカバリ時間	tHRDRCV	3CK	_	SYSCLK	
ライトリカバリ時間	tHWRRCV	5CK	_	SYSCLK	
ウェイト出力遅延時間	tHWAITD	5	10	ns	
ウェイト後ライト挿入可能許容 時間	tHWTWRI	0	_	ns	
データバス ON 遅延時間	tHDTON	5	10	ns	
データバス OFF 遅延時間	tHDTOFF	0	2	ns	
データ確定遅延時間]	tHDTD1(内部レ ジスタ)	5CK	6CK	SYSCLK	
データ確定遅延時間2	tHDTD2 (AXI)		0	ns	
ライトデータセットアップ時間	tHDTS	3CK	_	SYSCLK	
ライトデータホールド時間	tHDTH	0	_	ns	
ライト後リード挿入時間	tHWRRDI	3CK	_	SYSCLK	
リード後ライト挿入時間	tHRDWRI	3CK	_	SYSCLK	
ライトストローブ間スキュー幅	tHWRSKW	0	1CK以下	SYSCLK	

SYSCLK:システムクロック(CLK_SYS)の周期

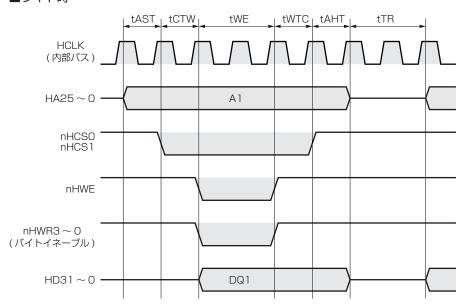
DMA 転送ハンドシェイク



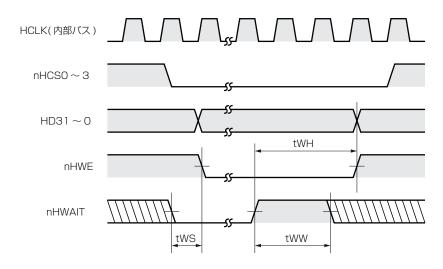
項目	記号	最小	標準	最大	単位	備考
DMA 転送ハンドシェイク REQ – ACK 応答時間	tD_AReqAck	0	_	_	ns	
DMA 転送ハンドシェイク REQ - ACK 完了時間	tD_NReqAck	0	_	_	ns	


パラレルバス (ホストモード)

SRAMコントローラ

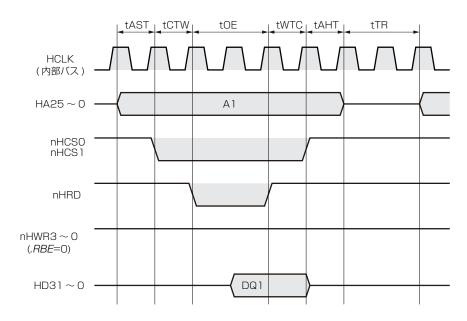

■出力遅延

■入力セットアップ、入力ホールド

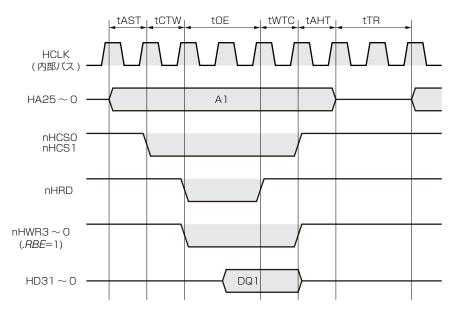


■ライト時

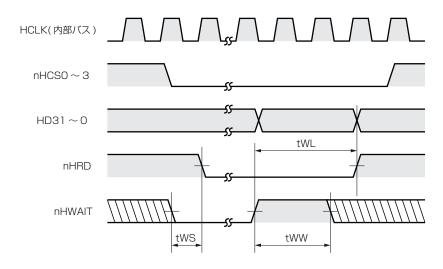
* tAST、tCTWのパラメータは 1 サイクルの指定はできません。便宜上、1 サイクルとして図示しています。


■ウェイト動作(ライト)

項目		記号	最小	標準	最大	単位	備考
パラレルバスク ロック	周波数	fHCLK	_	ı	133.33	MHz	内部クロック CLK_PBH 最大条件: CPU コアクロック 400MHz動作時
出力遅延時間	出力遅延時間	tDSMC	0	I	Э	ns	HCLK 単位の設定タイミングに対する出力遅延対象端子: HD31 \sim 0、HA25 \sim 0、nHWE、nHADSC、nHCSO \sim 3、nHWRO \sim 3、nHRD
入力セットアップ タイム	入力セットアップ	tSSMC	(0	_	_	ns	HCLK単位の設定タイミングに対す る入力セットアップ時間 対象端子:nHWAIT
入力ホールドタイム	入力ホールド	tHSMC	0	_	_	ns	HCLK単位の設定タイミングに対す る入力ホールド時間 対象端子:nHWAIT
アドレスセット アップタイム	アドレスー nHCSO ~ 3間	tAST	0	_	4	HCLK	ASTレジスタの設定値を反映
ライトイネーブル 遅延	nHCSO~3間 -nHWE間	tCTW	0	_	4	HCLK	CTWレジスタの設定値を反映
ライトストローブ 幅	nHWE幅	tWE	2	_	_	HCLK	16×EAT1+tAT1
ライト後チップイ ネーブル遅延	nHWE- nHCSO~3問	tWTC	0	_	4	HCLK	WTCレジスタの設定値を反映
アドレスホールド タイム	nHCS0 ~ 3間- アドレス間	tAHT	0	_	3	HCLK	AHTレジスタの設定値を反映
ターンアラウンド タイム	アクセス間	tTR	1	_	_	HCLK	16 × ETRNA + tTRNA
ウェイトセット アップタイム	ウェイトセット アップ	tWS	2-AT1	_	_	HCLK	AT1: <i>AT1</i> レジスタ設定値
ウェイト完了パルス幅	最小パルス幅	tWW	2	-	-	HCLK	対象端子:nHWAIT 入力セットアップ、ホールドタイム を満たさない場合は、最小3HCLK とする。
ウェイト後データ ホールド時間	最小データホール ド時間	tWH	_	2	_	HCLK	

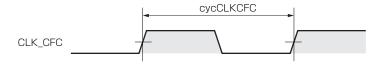

■リード時

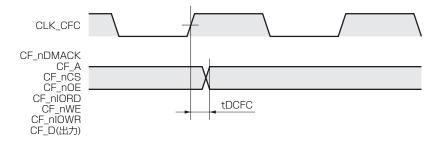
· TIMING_n.RBE = 0 設定時


* tAST、tCTWのパラメータは 1 サイクルの指定はできません。便宜上、1 サイクルとして図示しています。

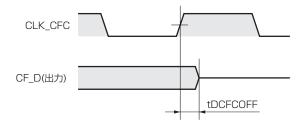
· TIMING_n.RBE = 1 設定時

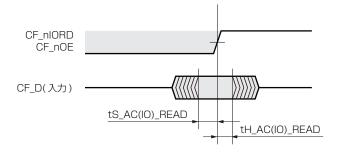
* tAST、tCTWのパラメータは 1 サイクルの指定はできません。便宜上、1 サイクルとして図示しています。

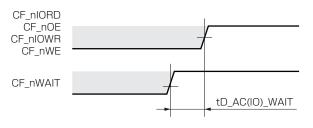

■ウェイト動作(リード)

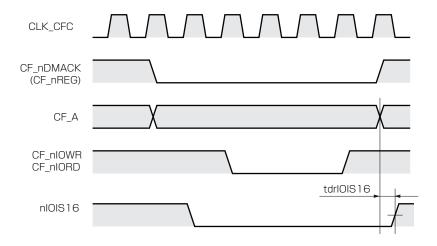

項目		記号	最小	標準	最大	単位	備考
内部クロック	パラレルバスク ロック周波数	fHCLK	_		133.33	ns	最大条件: CPUコアクロック 400MHz動作時
出力遅延時間	出力遅延時間	tDSMC	0	_	3	ns	HCLK単位の設定タイミングに対す る出力遅延 対象端子: HD31 ~ 0、HA25 ~ 0、 nHWE、nHADSC、nHCSO ~ 3、 nHWRO ~ 3、nHRD
入力セットアップ タイム	入力セットアップ	tSSMC	9	l	I	ns	HCLK単位の設定タイミングに対す る入力セットアップ時間 対象端子:HD31 ~ 0、nHWAIT
入力ホールドタイム	入力ホールド	tHSMC	0	_	П	ns	HCLK単位の設定タイミングに対す る入力ホールド時間 対象端子:HD31 ~ 0、nHWAIT
アドレスセット アップタイム	アドレス- nHCSO~3間	tAST	0		4	HCLK	AST レジスタの設定値を反映
リードイネーブル 遅延	nHCSO ~ 3 - nHRD間	tCTW	0		4	HCLK	CTWレジスタの設定値を反映
リードストローブ 幅	nHRD幅	tOE	2	1	ı	HCLK	16×EAT1+tAT1
リード後チップイ ネーブル遅延	nHRD - nHCSO ~ 3間	tWTC	0	_	5	HCLK	WTCレジスタの設定値を反映
アドレスホールド タイム	nHCSO ~ 3 - アドレス間	tAHT	0	_	3	HCLK	AHTレジスタの設定値を反映
ターンアラウンド タイム	アクセス間	tTR	1		_	HCLK	16×ETRNA+tTRNA
ウェイトセット アップタイム	ウェイトセット アップ	tWS	2-AT1		Ι	HCLK	AT1: <i>AT1</i> レジスタ設定値
ウェイト完了パルス幅	最小パルス幅	tWW	2	_	-	HCLK	対象端子:nHWAIT 入力セットアップ、ホールドタイム を満たさない場合は、最小3HCLK とする。
ウェイト後データ ラッチタイミング	データ取り込みタ イミング	tWL	_	2	_	HCLK	

CFコントローラ

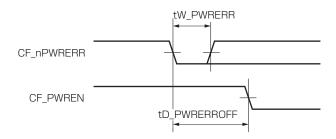

■内部クロック


■出力遅延

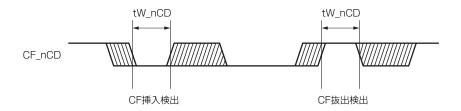

■データバス出力


■リードデータタイミング

■ WAIT タイミング

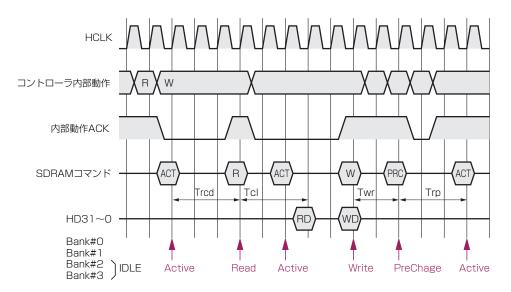


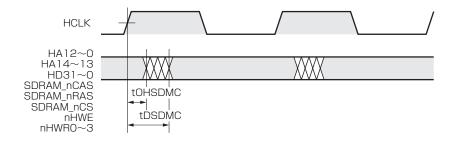
■IOIS16立ち上がり



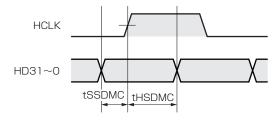
項目		記号	最小	標準	最大	単位	備考
内部クロック	CFクロック周波数	fCLKCFC	32.5	33	33.33	MHz	システムクロックの6 分周(最大条件:内部回 路200MHz動作時)
	CFクロック周期	cycCLKCFC	30	30.3	30.8	ns	
出力遅延時間	出力遅延時間	tDCFC	0	_	3	ns	CFクロック単位の設定タイミングに対する出力遅延
出力データ ドライブ	出力ドライブオフ時間	tDCFCOFF	0	_	3	ns	CFクロック単位の設定タイミングに対する出力遅延
1/0アクセス	アドレス-IOIS16立ち 上がり時間	tdrIOIS16(ADR)	_	_	35	ns	
Attribute/ Common Read タイミング	Attribute/Common Readデータセットアップ時間	tS_AC_Read	6	_	_	ns	nOE立ち上がり基準
	Attribute/Common Readデータホールド時間	tH_AC_Read	0	_	_	ns	nOE立ち上がり基準
	CF_nWAIT立ち上がりー CF_nOE (CF_nWE) 立ち 上がり時間	tD_AC_Wait	3+BSM	_	_	CLKCFC	BSM: オフセットアド レス 08h、ビット[7:4] の設定値
I/O Read タイミング	I/O Read データ セットアップ時間	tS_IO_Read	6	_	_	ns	nIORD立ち上がり基準
	I/O Read データ ホールド時間	tH_IO_Read	0	_	_	ns	nIORD立ち上がり基準
	CF_nWAIT立ち上がりー CF_nIORD (CF_nIOWR) 立ち上がり時間	tD_IO_Wait	3+BSIO	_	_	CLKCFC	BSIO:オフセットア ドレス 08h、ビット [11:8]の設定値

■電源保護

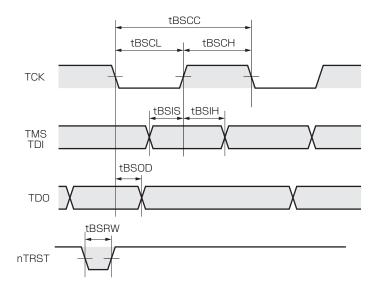

■挿抜


項目		記号	最小	標準	最大	単位	備考
電源保護	電源異常検出パルス幅	tW_PWRERR	30	_	_	ns	
	出力遅延時間	tD_PWRERROFF	-	_	40	ns	
挿抜動作	カード挿抜検出パルス幅	tW_nCD	30	_	_	ns	

外付け SDRAM コントローラ


■アクセスタイミング

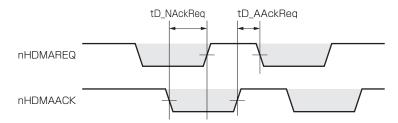
■外付け SDRAM 出力遅延



■外付けSDRAM 入力セットアップ、入力ホールド

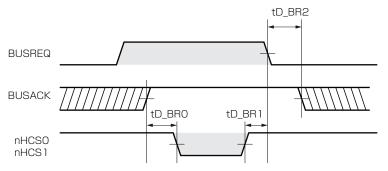
項目		記号	最小	標準	最大	単位	備考
SDRAM ク	周波数	fHCLK	_	_	66.67	ns	CLK_SDMC
ロック	デューティ比	dHCLK	45	_	55	_	動作条件: CPUコアクロック 400MHz動作時 (CPUコアクロックの6分周(66MHz)、または8分周(50MHz)動作)
出力遅延時間	出力遅延および High-Z遷移時間	tDSDMC	_	-	2.1	ns	HCLK単位の設定タイミングに対する出 力遅延 *1 HA12 ~ 0、HA14 ~ 13、HD31 ~ 0、SDRAM_nCAS、SDRAM_nRAS、 SDRAM_nCS、nHWE、nHWR0 ~ 3端子
出力ホールド 時間	出力ホールド時間	tOHSDMC	0.8	_	_	ns	HCLK単位の設定タイミングに対する出力ホールド時間*1 HA12 ~ 0、HA14 ~ 13、HD31 ~ 0、SDRAM_nCAS、SDRAM_nRAS、 SDRAM_nCS、nHWE、nHWR0 ~ 3端子
入力セット アップタイム	入力セットアップ	tSSDMC	8.2	_	-	ns	HCLK単位の設定タイミングに対する入 カセットアップ時間 *2 HD31 ~ 0 端子
入力ホールド タイム	入力ホールド	tHSDMC	0	_	_	ns	HCLK単位の設定タイミングに対する入 カホールド時間 *2 HD31 ~ 0端子
アドレスセッ トアップ	アドレス-HCS間	tAST	0	_	4	HCLK	ASTレジスタの設定値を反映
ライトイネー ブル遅延	HCS - HWEB間	tCTW	0	_	4	HCLK	CTW レジスタの設定値を反映
ライトスト ローブ幅	HOE幅	tOE	2	_	_	HCLK	16×EAT1+tAT1
ライト後チッ プイネーブル 遅延	HWEB - HCS間	tWTC	0	_	5	HCLK	WTCレジスタの設定値を反映
アドレスホー ルド	HCS-アドレス間	tAHT	0	_	3	HCLK	AHTレジスタの設定値を反映
ターンアラウ ンドタイム	アクセス間	tTR	1	_	_	HCLK	16×ETRNA+tTRNA

JTAG



項目	記号	最小	標準	最大	単位	備考
JTAG クロック周期	tBSCC	30	_	_	ns	最大33MHz
JTAGクロックL幅	tBSCL	15	_	_	ns	
JTAGクロックH幅	tBSCH	15	_	_	ns	
TMS、TDIセットアップ時間	tBSIS	8	_	_	ns	
TMS、TDIホールド時間	tBSIH	5	_	_	ns	
TDO 出力遅延	tBSOD	0	_	5	ns	
JTAGリセット幅	tBSRW	1	_	_	μs	

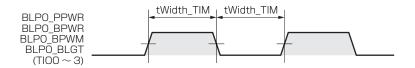
ペリフェラル


DMA コントローラ

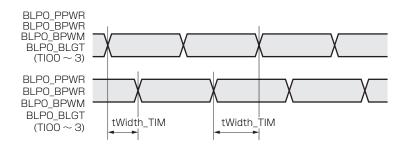
■ DMA 転送ハンドシェイク

項目	記号	最小	標準	最大	単位	備考	
DMA転送ハンドシェイク	ACK - REQ 応答時間	tD_NAckReq	0	_	_	ns	
DMA 転送ハンドシェイク	REQ - ACK 完了時間	tD_NReqAck	0	_	_	ns	

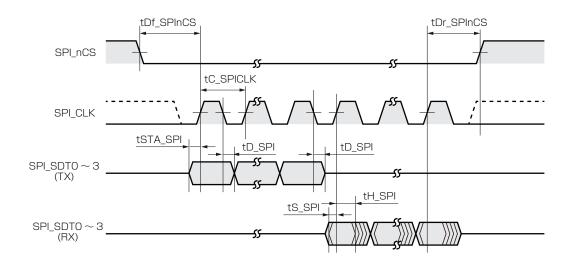
■ DMA 転送バス調停


項目		記号	最小	標準	最大	単位	備考
バス調停	バス応答-アクセス開始時間	tD_BR0	0	_	_	ns	
	バスアクセス完了-バス要求解除時間	tD_BR1	0	_	_	ns	
	バス応答ホールド時間	tD_BR2	0	_	_	ns	

タイマ


■出力タイミング

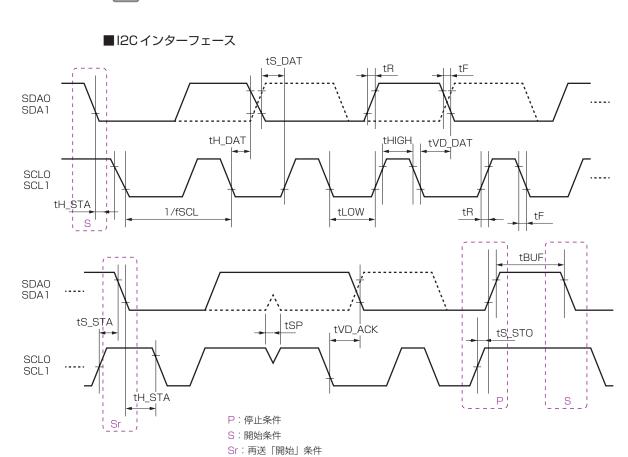
■入力タイミング



■ロータリーエンコーダ入力時 (TIMnCTRL.MOD = 1h設定時)

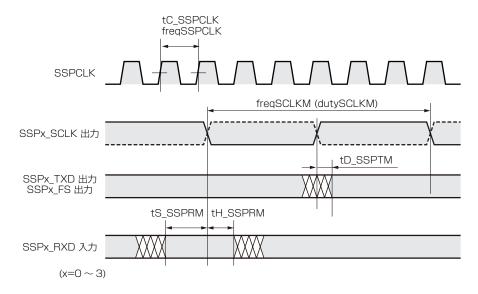
項目		記号	最小	標準	最大	単位	備考
出力時	タイマ出力端子スキュー	tSkew_TIM	_	_	1	ns	タイマ出力が同時に変化する場合のスキュー
入力時	タイマ入力端子パルス幅	tWidth_TIM	12	_	_	ns	TIMnRSTTRG.RES レジスタの設定値 が「Oh」 の場合、システムクロックが 166MHz以上
			4		_	SYSCLK	TIMnRSTTRG.RES レジスタの設定値 が「Oh」の場合、システムクロックが 166MHz未満
			2	_	_	TICK	TIMnRSTTRG.RES レジスタの設定値 が「2h」、または「3h」の場合

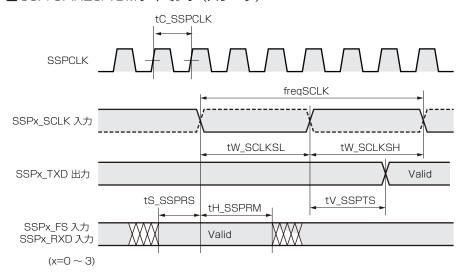
SPI-ROM コントローラ



項目	記号	最小	標準	最大	単位	備考
SPIクロック周期	tC_SPICLK	20		_	ns	SPI_CLK端子
SPIクロックデューティ比	dutySPICLK	45	_	55	%	
SPIチップセレクトアサート時間	tDf_SPInCS	tC_SPICLK × 1.5 - 3	ı	tC_SPICLK × 1.5	ns	SPIクロック 1.5 周期
SPIチップセレクトネゲート時間	tDr_SPInCS	tC_SPICLK	_	tC_SPICLK + 3	ns	SPIクロック 1 周期
SPI出力開始時間	tSTA_SPI	tC_SPICLK × 0.5 - 3	_	tC_SPICLK × 0.5	ns	SPIクロック 0.5 周期
SPI出力遅延、High-Z制御遅延	tD_SPI	0	_	3	ns	SPI_SDT端子
SPI入力セットアップ	tS_SPI	3	_	_	ns	SPI_SDT端子
SPI入力ホールド	tH_SPI	3	_	_	ns	SPI_SDT端子

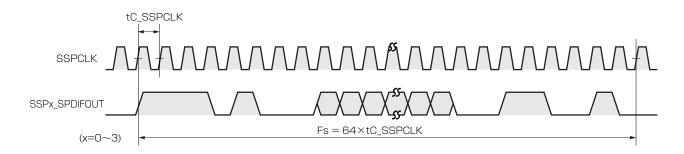
I2C


I2Cに関してのみ [I/O 出力能力 16mA] で算出しています。


項目	記号	最小	標準	最大	単位	備考
SCLクロック周波数	fSCK	_	_	100	kHz	
SCL/SDA立ち上がり時間(入力時)	tR	1	_	1000	ns	
SCL/SDA立ち下がり時間(入力時)	tF	1	_	300	ns	
SCL/SDA立ち下がり時間(出力時)		_	_	40	ns	駆動能力4mA(Fast) 設定時、 外部負荷400pF、70%→30% 立ち下がり
スタート時ホールド時間	tH_STA	4.0	_	_	μs	スタート時、リピート時
SCLクロックL期間	tLOW	4.7	_	_	μs	
SCLクロックH期間	tHIGH	4.0	_	_	μs	
リピートスタート時セットアップ時間	tS_STA	4.7	_	_	μs	
データホールド時間	tH_DAT	0	_	_	μs	
データセットアップ時間	tS_DAT	250	_	_	ns	
ストップ時セットアップ時間	tS_STO	4.0	_	_	μs	
ストップ-スタート時間	tBUF	4.7	_	_	μs	
スパイク抑制幅	tSP	0	_	50	ns	
データ有効時間	tVD_DAT	_	_	3.45	μs	
アクノリッジ時間	tVD_ACK	_	_	3.45	μs	

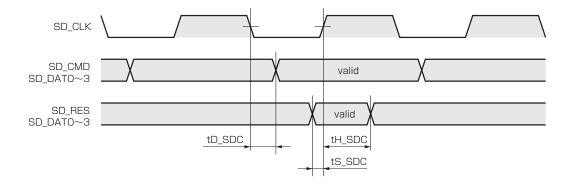
汎用シリアル (SSP/SPI/I2S/TDM/SPDIF)

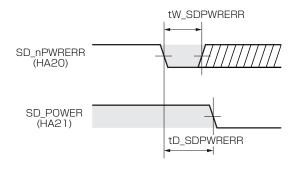
■ SSP/SPI/I2S/TDM タイミング (マスタ)



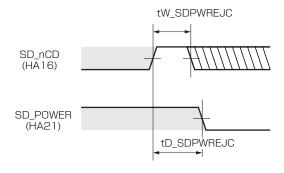
■ SSP/SPI/I2S/TDM タイミング (スレーブ)

項目		記号	最小	標準	最大	単位	備考
クロック	汎用シリアルクロッ ク周期	tC_SSPCLK	9.09	_	_	ns	外部入力/内部生成時ともに
	汎用シリアルクロッ ク周波数	fSSPCLK	_		110	MHz	外部入力/内部生成時ともに
マスター 動作時	マスター時ビットクロック周波数	fSCLKM	_	_	fSSPCLK/2	fSCLKM	SPI動作時、分周 比は偶数のみ
			-	_	fSSPCLK/4		I2S/TDM 動 作 時、分周比は偶数 のみ
	マスター時ビットク ロックデューティ比	dutySCLKM	45	_	55	%	
	マスター時送信遅延 および High-Z 遷移 時間	tD_SSPTM	-3	_	3	ns	
	マスター時受信 セットアップ	tS_SSPRM	10	_	_	ns	
	マスター時受信 ホールド	tH_SSPRM	10	_	_	ns	
スレーブ 動作時	スレーブ時ビットクロック周波数	fSCLKS	_	_	fSSPCLK/6	fSCLKS	
	スレーブ時ビットク ロックL期間	tW_ SCLKSL	2.5	_	_	tC_SSPCLK	
	スレーブ時ビットク ロックH期間	tW_ SCLKSH	2.5	_	_	tC_SSPCLK	
	スレーブ時送信遅延 および High-Z 遷移 時間	tV_SSPTS	2 × (tC_SSPCLK)+3	_	_	ns	汎用シリアルク ロック2クロック +信号遅延
	スレーブ時受信 セットアップ	tS_SSPRS	0	_	_	ns	
	スレーブ時受信 ホールド	tH_SSPRS	2 × (tC_SSPCLK) + 10	_	_	ns	汎用シリアルク ロック2クロック +信号遅延


■ SPDIF

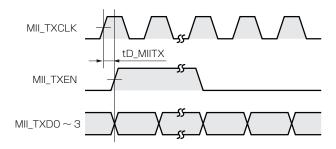

項目		記号	最小	標準	最大	単位	備考
クロック	汎用シリアルクロック周期	tC_SSPCLK	9.09	_	_	ns	外部入力/内部生成時ともに
	汎用シリアルクロック周波数	fSSPCLK	_	_	110	MHz	外部入力/内部生成時ともに
	汎用シリアルクロック周波数		_	64	_	Fs	汎用シリアルクロック周期は
	(SPDIF使用時)						64Fs にする必要があります

SDコントローラ

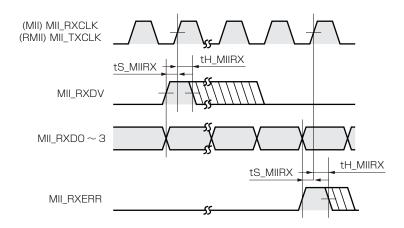

■SDホスト動作タイミング

■SDホスト(電源保護応答動作)

■SDホスト(カードイジェクト応答動作)

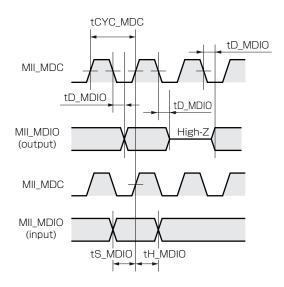

項目	記号	最小	標準	最大	単位	備考
SDクロック周波数	fSDC	-	_	50	MHz	
SDホスト出力遅延	tD_SDC	-2	_	2	ns	SD_CMD、SD_DAT端子
SDホスト入力 セットアップ	tS_SDC	9 — (p_lat_off × SYSCLK × 2)	ı	n		SD_CMD、SD_DAT端子*1
SDホスト入力 ホールド	tH_SDC	-8+(p_lat_off× SYSCLK×2)	_	_	ns	SD_CMD、SD_DAT端子*1
SDホスト入力 セットアップ2	tS_SDC2	- 1	ı	-	ns	SYSCLK = 5ns 時、 SD_CMD、SD_DAT端子(p_ lat_off = 1 設定時)
SDホスト入力 ホールド2	tH_SDC2	2	_	_	ns	SYSCLK = 5ns 時、 SD_CMD、SD_DAT端子(p_ lat_off = 1 設定時)
SDホスト電源保 護応答時間	tD_SDPWRERR	_	_	4×SYSCLK	ns	SD_POWER端子
SDホスト電源保 護検出時間	tW_SDPWRERR	4×SYSCLK	_	_	ns	SD_POWER端子
SDホストイジェ クト応答時間	tD_SDPWREJC	_	_	$(2^{(9 + db_timeout)} + 4) \times SYSCLK$	ns	db_timeout:オフセット アドレス 1 1 4h の設定値
SDホストイジェ クト検出時間	tW_SDPWREJC	(2 ^(9 + db_timeout)) ×	_	_	ns	db_timeout:オフセット アドレス 1 1 4 h の設定値

^{*1} SYSCLKはシステムクロック周期。 p_lat_offはオフセットアドレス 100h、ビット [13:8]の設定値 デフォルトスピードの場合、SD カード側の出力遅延は SD_CLK 立ち下がりから最大 14ns なので、SD クロック周波数は 20MHz 以上のとき p_lat_offを 1 以上に設定する必要があります。


ハイスピード (HS) の場合、SDカード側の出力遅延は SD_CLK 立ち上がりから最大 14ns なので、 p_lat_off を 1 に設定する必要があります。

イーサネットコントローラ

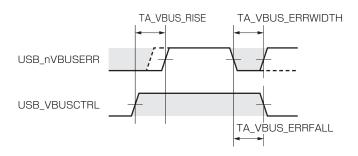
■ MII/RMII タイミング (送信側)



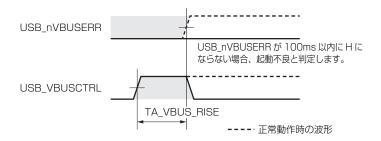
■ MII/RMII タイミング (受信側)

項目		記号	最小	標準	最大	単位	備考
MII動作時	MII動作時クロック周波数	fMIICLK100	_	25	_	MHz	100Mbps動作時、 MII_TXCLK、MII_RXCLK端子
	MII動作時クロック周波数	fMIICLK10		2.5	_	MHz	10Mbps動作時、 MII_TXCLK、MII_RXCLK端子
	MII動作時クロックデュー ティ比	dutyMIICLK	35	_	65	%	
RMII動作時	RMII動作時クロック周波数	fRMIICLK	_	50	_	MHz	10/100Mbps動作時、 MII_TXCLK端子
	RMII動作時クロック デューティ比	dutyMIICLK	35	_	65	%	
送信側	送信側出力遅延	tD_MIITX	3	_	12	ns	MII_TXEN、MII_TXDO-3端子
受信側	受信側入力セットアップ	tS_MIIRX	4	_	-	ns	MII_RXDV、MII_RXD0-3、 MII_RXERR端子
	受信側入力ホールド	tH_MIIRX	2	_	_	ns	MII_RXDV、MII_RXD0-3、 MII_RXERR端子

■ MDC/MDIO タイミング



項目		記号	最小	標準	最大	単位	備考
SerialManagement	MDCクロック周波数	1/tCYC_MDC	_	2.5	25	MHz	
	MDC クロックデューティ比	dutyMDC	40	_	60	%	
	MDIO 出力遅延時間	tD_MDI0	-5	_	5	ns	
	MDIO 入力セットアップ時間	tS_MDI0	20	_	_	ns	
	MDIO 入力ホールド時間	tH_MDI0	0	_	_	ns	


USBコントローラ

■USB 電源保護動作タイミング特性

・VBUS正常起動後、VBUS異常検出時の動作

·VBUS起動不良時の動作

項目	記号	最小	標準	最大	単位	備考
VBUS起動許容時間	TA_VBUS_RISE	I	I	100	ms	VBUS起動時間が100msを超 えた場合、VBUS起動不良と判定 します。
VBUS異常検出最小 パルス幅	TA_VBUS_ERRWIDTH	480	I	ı	μs	USBOTG_CSR レ ジ ス タ bit[10]VBUS_FLT_SEL=1b の とき
		140	ı	-	μs	USBOTG_CSR レ ジ ス タ bit[10]VBUS_FLT_SEL=0b の とき
VBUS異常検出時電源 OFF時間	TA_VBUS_ERRFALL	_	1	480	μs	USBOTG_CSR レ ジ ス タ bit[10]VBUS_FLT_SEL=1b の とき
		_	_	140	μs	USBOTG_CSR レ ジ ス タ bit[10]VBUS_FLT_SEL=0b の とき

■USBアナログ端子 (DP/DM) のダイナミック特性

· USB 2.0 transceiver (HS)

Symbol	Parameter	Condition	Min.	Тур.	Max	Unit	USB2.0 Symbol	USB2.0 Spec.
Input levels	(Differential receiver)							
VHSDIFF	High-Speed differential input sensitivity	VI(DP) - VI(DM) measured at the connection of an application circuit	300	_	_	mV	定義なし	Figure 7-18. Template 6
VHSCM	High-Speed data signaling common mode voltage range	_	- 50	_	500	mV	VHSCM	Table7-7
VHSSQ	High-Speed squelch detection threshold	Squelch is detected.	_	_	100	mV	VHSSQを満たす	Table7-7
		No squelch is detected.	200	_	_	mV		
VHSDSC	High-Speed disconnection detection threshold	Disconnection is detected.	625	_	_	mV	VHSDSC	Table7-7
		Disconnection is not detected.	_	_	525	mV	7	
Output leve	els							
VHSOI	High-Speed idle level output voltage (Differential)	_	- 10	_	10	mV	VHSOI	Table7-7
VHSOL	High-Speed low level output voltage (Differential)	_	- 10	_	10	mV	VHSOL	Table7-7
VHSOH	High-Speed high level output voltage (Differential)	_	360	400	440	mV	VHSOH	Table7-7
VCHIRPJ	Chirp-J output voltage (Differential)	_	700	_	1100	mV	VCHIRPJ	Table7-7
VCHIRPK	Chirp-K output voltage (Differential)	_	- 900	_	-500	mV	VCHIRPK	Table7-7
IDP/DM	Allowable output current of DP/DM	When the termination is 45 Ω \pm 10%	14.55	17.78	21.79	mA		
Resistance)							
RDRV	Driver output impedance	Equivalent resistance used for the internal chip	40.5	45	49.5	Ω	ZHSDRV	Table 7-8
ZHSTERM	Differential impedance	_	76.5	90	103.5	Ω	80 Ω \leq ZHSTERM \leq 100 Ω	7.1.6.2

特記事項無き場合は、『Universal Serial Bus Specification Revision 2.0 (usb_20.pdf)』参照。

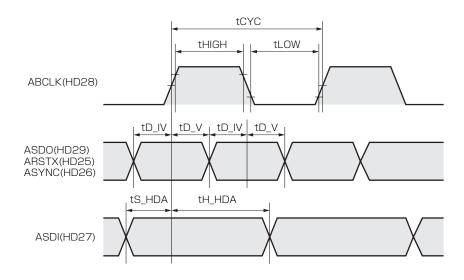
· USB 1.1 transceiver (FS/LS)

Symbol	Parameter	Condition	Min.	Тур.	Max	Unit	USB2.0 Symbol	USB2.0 Spec.		
Input levels	(Differential receiver)									
VDI	Differential input sensitivity	VI(DP) - VI(DM)	0.2	-	-	V	VDI	Table 7-7		
VcM	Differential common mode voltage	_	0.8	_	2.5	V	VCM	Table 7-7		
ZHSDRV	Driver output resistance	Equivalent resistance used for the internal chip	40.5	45	49.5	Ω	ZHSDRV	Table 7-8		
RPU1	Pull-up resistor during idle	Equivalent resistance used for the internal chip	900	_	1575	Ω	RPU1	7.1.5.1 (ECN: resistor_ecn)		
RPU2	Driver output resistance	Equivalent resistance used for the internal chip	525	_	1515	Ω	Rpu2	7.1.5.1 (ECN: resistor_ecn)		
RPD	Driver output resistance	Equivalent resistance used for the internal chip	14.25	_	24.8	kΩ	RPD	Table 7-7 (ECN: resistor_ecn)		
Input levels	(Single-ended receiver)									
VsE	Single-ended receiver threshold	-	0.8	_	2.0	V	VIL, VIH	Table 7-7		
Output leve	Output levels									
VoL	Low-level output voltage	-	0	_	0.3	V	VoL	Table7-7		
VoH	High-level output voltage	_	2.8	_	3.6	V	Voh	Table7-7		

■USBアナログ端子 (DP/DM) のスタティック特性

· Driver characteristics

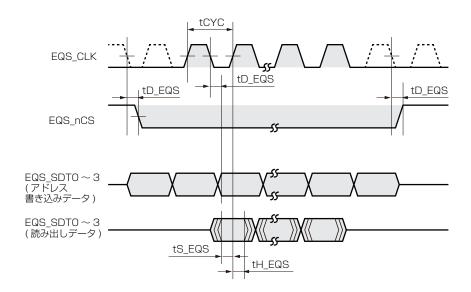
Symbol	Parameter	Condition	Min.	Тур.	Max	Unit	USB2.0 Symbol	USB2.0 Spec.
High-speed m	node					•		
THSRDRATE	High-Speed TX data rate	_	479.76	_	480.24	Mbps	THSDRAT	Table 7-8
THSRDRATE	High-Speed RX data rate	_	479.76		480.24	Mbps	THSDRAT	Table 7-8
tHSR	High-Speed differential rise time	_	500	_	_	ps	THSR	Table 7-8
thsf	High-Speed differential fall time	_	500	_	_	ps	THSF	Table 7-8
Full-Speed mo	ode							
TFSDRATE	Full-Speed TX data rate	_	11.99	_	12.01	Mbps	TFDRATHS. TFDRATE	Table 7-9
TFSRDRATE	Full-Speed RX data rate	_	11.97	_	12.03	Mbps	TFDRATHS, TFDRATE	Table 7-9
tFR	Rise time	CL=50pF, 10% ~ 90% of VOH - VOL	4.0	_	20	ns	TFR	Table 7-9
tFF	Fall time	CL=50pF, 10% ~ 90% of VOH - VOL	4.0	_	20	ns	TFF	Table 7-9
tfRMA	Differential rise/fall time matching (tFR/tFF)	Excluding the first transition from the idle mode	90	_	110	%	TEREM	Table 7-9
VCRS	Output signal crossover voltage	Excluding the first transition from the idle mode	1.3	_	2.0	V	VCRS	Table 7-7
Low-speed mo	ode					•		
TLSDRATE	Low-Speed TX data rate	_	1.49925	_	1.50075	Mbps	TLDRATHS, TLDRATE	Table 7-10
TLSRDRATE	Low-Speed RX data rate	_	1.47750	_	1.52250	Mbps	TLDRATHS, TLDRATE	Table 7-10
tLR	Rise time	CL=200pF \sim 600 pF, 10% \sim 90% of IVOH – VOLI	75	_	300	ns	TLR	Table 7-10
tLF	Fall time	CL=200pF \sim 600 pF, 10% \sim 90% of IVOH – VOLI	75	_	300	ns	TLF	Table 7-10
tlrma	Differential rise time/fall time matching (tLR/tLF)	Excluding the first transition from the idle mode	80	_	125	%	TLRFM	Table 7-10
VCRS	Output signal crossover voltage	Excluding the first transition from the idle mode	1.3	_	2.0	V	VCRS	Table 7-7


· Driver timing

Symbol	Parameter	Condition	Min.	Тур.	Max	Unit	USB2.0 Symbol	USB2.0 Spec.	
High-Speed	l mode								
	Driver waveform requirement	Please refer to the eye pattern of template 1.	te Follow template 1, described in USB specification, revision 2.0.				Template 1		
Full-Speed mode									
	VI, FSEO, OE to DP, DM Propagation delay	For detailed descriptions of VI, FSEO, and OE, please refer to the USB 1.1 specification.		_	15	ns			
TFDEOP	Source jitter for differential transition to SEO transition	_	- 2.0	_	5.0	ns	TFDEOP	Table 7-9	
TJR1	Receiver jitter	To next transition	- 18.5	_	18.5	ns	TJR1	Table 7-9	
TJR2	Receiver jitter	For paired transition	- 9.0	_	9	ns	TJR2	Table 7-9	
TFEOPT	Source SEO interval of EOP	_	160	_	175	ns	TFEOPT	Table 7-9	
TFEOPR	Receiver SEO interval of EOP	-	82	_	_	ns	TFEOPR	Table 7-9	
TFST	Width of SEO interval during differential transition	-	_	-	14	ns	TFST	Table 7-9	
Low-Speed	mode								
TLDEOP	Source jitter for differential transition to SEO transition	_	- 40	_	100	ns	TLDEOP	Table 7-10	
TJR1	Receiver jitter	To next transition	- 75	_	75	ns	TDJR1	Table 7-10	
TJR2	Receiver jitter	For paired transition	- 45	_	45	ns	TDJR2	Table 7-10	
TLEOPT	Source SEO interval of EOP	_	1.25	_	1.5	μs	TLEOPT	Table 7-10	
TLEOPR	Receiver SEO interval of EOP	_	670	_	_	ns	TLEOPR	Table 7-10	
TLST	Width of SEO interval during differential transition	_	_	_	210	ns	TLST	Table 7-10	
Not specific	ed: Low-Speed delay time is dominated by the slow R.								

· Receiver timing

Symbol	Parameter	Condition	Min.	Тур.	Max	Unit	USB2.0 Symbol	USB2.0 Spec.			
High-speed m	High-speed mode (Template 4, USB specification rev. 2.0)										
	Data source jitter and receiver jitter tolerance	Please refer to the eye pattern of template 4.	USB R	ev. 2.0 Ter	nplate 415		Template 4				
Full-Speed mo	Full-Speed mode										
tPLH(rcv)	Receiver propagation delay (DP, DM to RX_RCV)	For detailed descriptions of RCV,	_	-	15	ns		USB Rev. 1.1 準拠			
tPHL(rcv)		please refer to the USB 1.1 specification.									
tPLH(single)	Receiver propagation delay (DP, DM to RX_DP, RX_DM)	_	_	_	15	ns		USB Rev. 1.1 準拠			
tPHL(single)											


HDオーディオコントローラ

項目	記号	最小	標準	最大	単位	備考
ABCLK周波数	1/tCYC	23.9976	24	24.0024	MHz	1ms以上の平均周波数
						(許容誤差± 100ppm)
ABCLK周期	tCYC	41.363	41.67	41.971	ns	
ABCLKのHレベル期間	tHIGH	18.75	_	22.91	ns	デューティ比 45 ~ 55%
ABCLKのLレベル期間	tLOW	18.75	_	22.91	ns	デューティ比 45 ~ 55%
ABCLKのジッタ	jCYC	_	_	390	ps	内蔵USB用PLL使用時*
出力有効期間 (ABCLK エッジ前)	tD_IV	7	_	_	ns	ASDO、ARSTX、ASYNC出力
出力有効期間 (ABCLK エッジ後)	tD_V	7	_	_	ns	ASDO、ARSTX、ASYNC出力
SDIセットアップ時間	tS_HDA	15	_	_	ns	
SDIホールド時間	tH_HDA	0	_	_	ns	

^{*} HDAudio rev1.0aではコントローラ側最大300ps、Codec側最大500psで規定されています。 内蔵 USB用 PLL の使用については十分な評価が必要です。 PLL を使用しない場合、XOUT端子に入力するクロック(または水晶振動子)は48MHzとする必要があります。

EQS コントローラ (Enhanced Quad Serial)

項目	記号	最小	標準	最大	単位	備考
EQSクロック周波数	1/tCYC	_	_	100	MHz	システムクロック 200MHz、 分周比最小設定時
ドットクロック出力デューティ比	dutyEQSCLK	45	_	55	%	内蔵PLL使用時
EQS出力遅延(対クロック)	tD_EQS	- 0.5	_	1.5	ns	
EQS出力ドライブ遅延(対クロック)		- 0.5	_	1.5	ns	
EQS入力セットアップ	tS_EQS	8.6	_	_	ns	
EQS入力ホールド	tH_EQS	0	_	_	ns	

ご注意

- ・ 本仕様書及び本注意書の記載内容は 2019 年 7 月現在のものです。
- 本仕様書の一部又は全部を弊社の許可なく、転載・複写することを堅くお断りします。
- 本仕様書に記載されている製品(以下「本製品」といいます。)をご利用される際、本仕様書の内容を正しく守ってお 使い下さい。
- 別途お客様と弊社との間で締結した書面による契約又は本製品の売買契約書の関連条項において定める場合を除き、 弊社は、本製品及び技術情報に関して、お客様に生じた間接的、結果的、特別又は偶発的な損害(逸失利益、機会の 喪失、業務の障害、データの喪失に基づく損害を含みますがこれらに限られません。)を負担いたしません。また弊社は、 明示的にも黙示的にも、本製品及び技術情報に関して、一切の保証(機能動作の保証、商品性の保証、特定目的への 合致の保証、情報の正確性の保証、第三者の権利の非侵害保証を含みますがこれらに限られません。)をしておりません。
- ・本製品の異常や故障による機会損失、二次的損害又は最大絶対規格値を超えてご使用された場合の本製品の故障等に対しましては、弊社はその責を負いかねますのでご了承下さい。
- 本仕様書の記載内容は本製品の改良などのため変更されることがあります。ご使用の際には最新の仕様書で内容をご確認願います。仕様書をご確認されることがなかった場合、万一ご使用機器に瑕疵が生じましても、弊社はその責を負いかねますのでご了承下さい。
- ・記載されております応用例やその定数などの情報につきましては、本製品の標準的な動作や使い方を説明するものです。従いまして、量産設計をされる場合には、外部諸条件を考慮していただきますようお願い致します。また、本製品のお客様の設備等への組み込みは、お客様の責任にて行われますようお願い致します。
- ・本仕様書に記載されております本製品に関する応用例、情報、諸データは、あくまで一例を示すものであり、これらに関する第三者の特許権又は著作権などの知的所有権及びその他の権利に対する弊社の保証を示すものではございません。従いまして(1)上記第三者の知的財産権の侵害の責任又は(2)本製品の使用により発生する責任につきましては、弊社はその責を負いかねますのでご了承下さい。
- ・ 本製品の販売に関し、本製品自体の使用、販売、その他の処分以外には、弊社又は第三者の所有又は管理している特 許権又は著作権などの知的財産権、その他のあらゆる権利について明示的にも黙示的にも、その実施又は利用を買主 に許諾するものではありません。
- ・本製品は「シリコン」を主材料として製造されております。
- 本製品は「耐放射線設計」はなされておりません。
- 弊社は、日々本製品の品質等の向上に努めておりますが、本製品が故障する可能性を完全に取り除くことはできません。 お客様におかれましては、本製品が故障しても、結果的に、人身事故、火災事故、社会的な損害を生じさせないよう、 冗長設計、延焼対策設計、過電流防止対策設計、誤動作防止設計などの安全設計をお願い致します。
- ・ 弊社は、本仕様書を完全なものとすべく努めておりますが、本仕様書は、あらゆる事象に対応できるものとはなって おりません。本仕様書を遵守することによって不具合等が発生するおそれがある場合にはあらかじめ弊社宛にご相談 いただくなど、お客様自身で適宜な対応をお願い致します。またお客様が本注意書及び本仕様書を遵守されたとしても、 必ずしも弊社が賠償・補償等の責任を負担するわけではないことについてもご理解頂けますようお願い致します。
- ・本仕様書に記載されている製品は、AV機器、OA機器、通信機器、家電製品、アミューズメント機器などの一般的な電子機器への使用を意図しています。(a) 直接生命に影響を及ぼす可能性のある機器(生命維持装置などを含みますがこれに限られません)及び(b) 極めて高度な信頼性が要求され、その製品の故障や誤作動が多大な損害を発生させる可能性のある機器(輸送機器制御装置、原子力制御、軍事機器などを含みますがこれに限られません)への使用は意図しておらず、また使用することは出来ません。万一、上記機器へのご使用を検討される際は、事前に弊社営業窓口までご相談願います。
- 本製品は、RoHS 指令対応製品です。
- ・ 弊社製品のうち、外国為替及び外国貿易管理法に定める戦略物資(又は役務)に該当するものを輸出する場合は、お 客様において関連法規を遵守の上、必要な手続きを行ってください。
- ・本注意書及び本仕様書の内容は、別段の定めがない限り、準拠法を日本国法として解釈されるものとします。また、本注意書及び本仕様書に関するすべての紛争については、東京地方裁判所を第一審の専属管轄裁判所とします。
- 社名、製品名などは、一般に各社の商標または登録商標です。

AX51903_DS06P

株式会社アクセル

〒101-8973 東京都千代田区外神田4-14-1 秋葉原UDX 南ウイング10階 TEL 03・5298・1670 FAX 03・5298・1671 https://www.axell.co.jp/

Copyright © 2018-2019 AXELL Corporation. All rights reserved.

AX51903_DS06P hpdl202110xx